

August 15, 2012

Mr. David Young California Regional Water Quality Control Board Los Angeles Region Site Cleanup Program 320 West 4th Street, Suite 200 Los Angeles, California 90013

Additional Subsurface Investigation Report

Continental Heat Treating

10643 Norwalk Boulevard, Santa Fe Springs, California
(Site Id. No. 204GW00, SCP No. 1057)

Fero Environmental Engineering, Inc. ("Fero") submits this report of the additional site assessment work at the subject site consistent with Fero's, November 15, 2011, Soils Investigation Report and Groundwater Well Installation Work Plan ("Report"), with the Regional Water Quality Control Board - Los Angeles Region's ("RWQCB"), Requirement to Submit Additional Technical Reports and Approval of Work Plan for Additional Groundwater Investigation Pursuant to California Water Code Section 13267 Order ("Directive"), dated January 23, 2012 and with the subsurface investigation portion of the RWQCB's, Approval of Work Plan for Additional Subsurface Investigation and Indoor Air Sampling Pursuant to California Water Code Section 13267 Order ("Approval"), dated May 14, 2012. The work was conducted on behalf of Continental Heat Treating, 10643 Norwalk Boulevard, Santa Fe Springs, California 90670. The RWQCB Directive conditionally approved the installation of groundwater monitoring wells discussed in Fero's Report, it requested additional investigations "to delineate the vertical and lateral extent of the VOC plume in groundwater" and "of soil vapor and soil matrix contamination originating from the Site" and it requested a work plan for indoor air sampling to be used to complete a vapor intrusion evaluation for the Site. This report discusses completion of the subsurface investigations at the site. The indoor air sampling and vapor intrusion evaluation will be the subject of future reports.

The investigations discussed herein were developed in a coordinated effort with Cardno ERI, ExxonMobil's consultant in connection with the former Jalk Fee Property to the north. The sampling locations were additionally modified consistent with RWQCB discussions during an onsite meeting on January 12, 2012.

Site Description

The "Site" is located at 10643 Norwalk Boulevard, Santa Fe Springs, California 90670. It consists of an approximate 70,000 ft² rectangular parcel located on the west side of Norwalk Boulevard approximately 450 feet north of Florence Avenue. The parcel is surrounded by primarily industrial

properties: Coast Aluminum and Architectural Inc. to the northwest, NHK Laboratories to the north, Oxyhealth LLC to the south, Excel Garden Products to the east across Norwalk Boulevard and a trophy warehouse/distribution tenant to the west. Improvements on the Site include a 20,000 ft² industrial building built in 1969 which is occupied by Continental Heat Treating, Inc. ("CHT"). Various above ground tanks containing coolants used in CHT's metal treatment processes are located to the south and west of the onsite buildings. A 5,000 ft² addition was added to the west end of the existing building, the face of the entire building was upgraded consistent with City of Industry requirements, and the remainder of the site was paved with concrete during 2011 and 2012. Figure 1 provides a plot of the Site.

CHT or its predecessor have occupied the Site since the building was built in 1969 and they use the building to process metal parts with heat to perform carbon nitriding and nitriding on the metal surfaces. Although no longer in use, CHT used a solvent degreaser in the approximate middle of the building from 1986 to 1995. Centec reported that prior investigations around the degreaser and in the northwest corner of the Site identified concentrations of chlorinated organics.¹

Former occupants of the properties adjacent to the Site were Mobil "Jalk Fee" to the north and former Hathaway oil production to the south and west of the Site. According to a February 21, 1975 Fire Department Permit, Hathaway Oil Company or "Pyramid Oil Company" operated 10,000 gallon gasoline, 5,000 gallon diesel and 5,000 gallon solvent underground storage tanks on the property to the south of the Site. Centec reported that Hathaway stored abandoned equipment proximate to the northwest corner of the Site and that the former Jalk Fee property was used for oil production and storage, as well as other uses, for several decades. Centec further indicated that significant soils and groundwater contamination had been detected on the former Jalk Fee property from at least 1990. Extremely high concentrations of Tetrachloroethylene ("PCE") were reportedly detected within 6 feet of CHT's northwestern fence and approximately 55 feet north of the fence. Mobil reportedly removed soil from VOC impacted areas of their site, including a small excavation slightly north of CHT's northwest corner.

Ongoing soils and groundwater investigations on the former Jalk Fee property indicate elevated concentrations of chlorinated organics and lesser concentrations of fuel hydrocarbons in both the soil and groundwater. The general groundwater flow direction reported by Cardno ERI was to the south toward the Site and therefore the organics originating on the former Jalk Fee property represent a significant threat to the Site.² Fero understands that ExxonMobil is currently performing certain subsurface investigation work on and about the Jalk Fee property. However, Fero was not provided the results of such investigation for consideration in this report. Fero expects that the organics in the soils on the former Jalk Fee property are similarly distributed and that significantly higher

¹ Collins, Steven N., REA and Daniel R. Louks, R.G., *Phase II Site Investigation Report*, January 2002, Centec Engineering, Inc., 1601 Dove Street, Suite 100, Newport Beach, CA 92660

² Anderson, James and Andy Nelson, Revised Well Installation Report, Former ExxonMobil Jalk Fee Property, May 17, 2011, Cardno ERI, 4572 Telephone Road, Suite 916, Ventura, CA 93003

concentrations of both chlorinated organics and fuel hydrocarbons (primarily short chain aliphatics) occur in the gas phase on the Jalk Fee property.

Cardno confirmed that oil production facilities occupied the former Jalk Fee property from the 1920's to 1990 when such facilities were removed so the site could be redeveloped. Cardno further indicated that TRC Alton Geoscience ("TRC") completed remediation at the site along with an exposure assessment that suggested the site did not represent a significant threat to site occupation or to the underlying groundwater. The City of Santa Fe Springs reportedly reopened the site for further investigations and evaluation.

Geology and Hydrogeology

The Site is located within the Santa Fe Springs Oil Field on the Santa Fe Springs Plain, which is part of the Montebello Forebay non-pressure area of the Central Basin. Groundwater is found throughout the region under unconfined conditions in the Recent Alluvium and in the underlying Exposition Aquifer. Within the Santa Fe Springs Oil Field, the upper 100 feet of sediments consist predominantly of permeable sands, although the upper 15 feet of sediments (and at greater depths particularly inside the building on the Site) have a higher silt and clay content and lower permeability. Site investigations indicate the underlying soils consist of interbedded layers of silt, sandy silt, sand and gravel from the surface to at least 170 fbg.

The first regional groundwater-bearing zone in the vicinity of the Site is the Exposition Aquifer, which is encountered at approximately 100 fbg. This aquifer ranges in thickness from 75 to 100 feet and is underlain by a 50 foot thick aquiclude, beneath which is the Gage Aquifer.³ The depth to groundwater during the last year of monitoring has ranged from approximately 91 to 98 feet below top of casing and the slope of the groundwater table has consistently indicated a flow direction of slightly west of south under a gradient of approximately 0.007 ft/ft. The most recent set that included data from the Former Jalk Fee Property also indicated a generally southerly flow under a gradient of 0.0073 ft/ft.

BACKGROUND

Environmental Support Technologies, Inc. ("EST") conducted a subsurface site investigation at the subject Site in March 1997 and it prepared a report, dated May 6 1997 on the investigation titled, *Site Assessment Report, Continental Heat Treating* ("EST Report"). The EST Report described previous investigations conducted at the Site by EST and it provided near surface soil sampling data collected by Green Environmental. EST and Green identified certain chlorinated hydrocarbons consisting primarily of PCE and Trichloroethylene ("TCE") from grade to just above the water table proximate to a former degreaser location. The PCE and TCE were detected at maximum soil gas concentrations of 1,948 μg/L and 156 μg/L, respectively, near the northeast corner of the former degreaser and the

_

³ California Department of Water Resources. 1961. *Groundwater Geology of the Coastal Plain of Los Angeles County, Idealized Geologic Sections M-M'-M'' and N-N'*.

concentrations generally decreased with increased radial distance away from that location. EST collected soil gas samples at 15 locations across the site at up to four depths at each location to a maximum depth of 35 feet. Based on the soil gas results, a soil boring was conducted to groundwater approximately five feet to the south of the former degreaser. Groundwater was encountered at approximately 68 feet below grade (fbg). PCE was detected in all of the soil samples collected from 5 to 60 fbg at concentrations ranging from 4.8 to $130 \mu g/Kg$.

On January 13, 2004, Fero conducted a soil vapor extraction test using the 2" well installed by EST and determined that sufficient flow could be achieved through the well to facilitate extraction at least proximate to the well. The initial discharge concentration of volatile organic compounds ("VOC") measured at the blower using a Photoionization Detector ("PID") was in excess of 2,000 ppm. Following the test, Fero connected the EST well to a 2.5 Hp blower, moisture knockout and series of carbon canisters located at the rear of the CHT building. The vapor extraction system was started for continuous organics removal on March 2, 2004 after resolution of some wiring issues and, except for periods of carbon change-outs, the system operated continuously from that date through September 21, 2004.

Two borings, FP1 & FP2, located in the area of the former degreaser, were conducted to 60 feet below grade ("fbg") on March 1, 2004 to replace probes previously installed by EST and five probes were installed in each boring at depths of 5, 15, 30, 45 & 60 fbg. Vacuums were measured in the probes on March 2, 2004 after the system had a chance to equilibrate. The vacuums are presented in Table 1.

Data collected during system monitoring indicated a significant reduction in the chlorinated organics in FP1 & FP2, particularly near surface. Although the concentrations of the aliphatic hydrocarbons (would be classified TPHg as it eluted) decreased significantly to 45 fbg in FP1 and to 30 fbg in FP2, the concentrations of these hydrocarbons doubled in FP1-60' and increased in FP2-45' & 60'. The TPH concentration increases at depth suggested a significant offsite contribution and possibly free product on the water table. VOC data collected from FP1 & FP2 are presented in Table 2.

The vapor extraction system did not operate efficiently for removal of the chlorinated hydrocarbons because of the presence of the high concentrations of, primarily aliphatic hydrocarbons in the soil gas. The aliphatics hydrocarbons are more volatile than PCE so they are extracted from the soil more readily. Because of the interference caused by the aliphatic hydrocarbons, the vapor extraction system was shut off on September 21, 2004.

Soils and Groundwater Investigations

Consistent with Fero's approved, *Modified Work Plan Continental Heat Treating* 10643 Norwalk Boulevard, Santa Fe Springs, California (Site Id. No. 204GW00, SCP No. 1057) (Work Plan), dated December 30, 2010, soil gas probes were installed at 14 locations across the property with depths ranging from 5 to 15 fbg for VOCs. Soil samples were collected from four of the soil gas sampling locations at 5 fbg for total petroleum hydrocarbon – carbon chain ("TPHcc") analysis and from three separate locations at 3 fbg for screening analysis of California Assessment Manual ("CAM") metals, including hexavalent Chromium. One boring was advanced to 120 fbg and completed as a

groundwater monitoring well. The sampling locations are indicated on Figure 1. The soil gas sampling data are summarized in Table 3. The soil matrix data are summarized in Table 4 - VOCs, Table 5 - TPHcc, and Table 6 - Metals.

Soil Gas Probe Installations and Sampling

Fero retained Hydro-Geo Spectrum (HGS) to install the soil gas sampling probes designated as FVP5-10 and FVP13-20 as indicated on Figure 1 by the "x" or the "Tx" on October 27, 2011. Probes were installed at each of these locations at 5 and 15 fbg using Geoprobe direct push technology either with truck mounted rig or limited access rig or with hand operated roto-hammer equipment. The probes consist of small diameter (1/4 inch) perforated polyethylene tubing. Upon reaching the desired sampling depth, coarse sand (#3 Monterey or equivalent) was placed through the inside of the Geo Probe rods to form an approximate 2 foot thick permeable sand pack around each of the perforated sections of the probes (to 1 foot above). The probes were sealed from each other and from the surface with hydrated bentonite and concrete. To avoid over saturation of the filter pack, granulated bentonite was used and the amount of water used to hydrate the bentonite seals was minimized.

In addition to these shallow soil gas sampling probe installations and pursuant to Fero's, RWQCB approved, Work Plan, dated December 30, 2010, Fero retained soil matrix samples from five feet below grade at four of the soil gas points designated as FVP7, 8 10 & 13 on Figure 1. These sampling points are indicated as "Tx" on Figure 1. The collected soil samples were analyzed for total petroleum hydrocarbons carbon chain (TPHcc) content using EPA Method 8015m. The soil matrix samples were collected with the Geoprobe in a stainless steel drive sampler fitted with an acetate sleeve. A section at the lead end of each retained sleeve was removed, capped with Teflon sheeting and rubber caps, properly labeled and placed in a cooler with ice at or near 4° C until delivery at the end of the day to Enviro-Chem Laboratories under proper chain of custody documentation for analysis.

Four deep borings were conducted at the site to install soil gas sampling probes at depths of 5, 15, 30, 60 & 90 fbg at the locations designated as FVP1-4 and as indicated on Figure 1 as an "x" inside a circle. All of these borings were conducted using a CME 75 drill rig (either full rig or limited access rig) fitted with 8" hollow stem auger flights. Soil samples were collected from each boring at 5 foot intervals starting at 5 fbg using a California modified split spoon sampler fitted with 6" stainless steel sleeves for lithologic evaluation. In addition, the samples collected at 5, 15, 30, 60 and 90 fbg were retained for soil matrix testing. At the soil matrix sampling depths, the lead sleeve was retained for analytical testing for TPHcc using EPA Method 8015m. These TPHcc sleeves were sealed with Teflon sheeting and plastic caps, they were labeled properly and placed in an ice chest containing ice at or near 4° C. The lead end of the second sleeves retained for analytical testing were further sampled using EPA Method 5035 techniques for VOC analysis. All of the 40 ml vials generated using this sampling technique were properly labeled and placed in the cooler with the sleeves and the cooler and samples were delivered under proper chain of custody documentation at the end of the day to

Enviro-Chem Laboratories for analysis. Analytical results for the soil matrix sampling are summarized in Tables 4 & 5.

Upon reaching 90 fbg in each of these deep borings, soil gas sampling probes were installed at 5, 15, 30, 60 & 90 fbg. As indicated above, the probes consisted of small diameter (1/4 inch) perforated polyethylene tubing. The probe ends were attached to a 1" diameter PVC pipe to maintain the appropriate sampling depth. Once installed, the annulus of the borehole was finished as indicated above with coarse sand (#3 Monterey or equivalent) placed through the inside of the auger flights as they were being withdrawn to form an approximate 2 foot thick permeable sand pack around each of the perforated sections of the probes (to 1 foot above). The probes were sealed from each other and from the surface with hydrated bentonite and concrete. To avoid over saturation of the filter pack, the amount of water used to hydrate the bentonite seals was tailored to the thickness of the seal. The deep probes were installed on October 19, 20, 21 and 24.

At three locations designated as FVP11 & 12 and PVP1a, indicated by a bold "O" on Figure 1, the Geoprobe was used to collect soil samples at 3 fbg for CAM metals analysis, including hexavalent Chromium, using appropriate EPA Methods. These samples were collected at the appropriate depth using a stainless steel drive sampler fitted with an acetate sleeve. A section at the lead end of each sleeve was removed, capped with Teflon sheeting and rubber caps, properly labeled and placed in a cooler with ice at or near 4° C until delivery at the end of the day to Enviro-Chem Laboratories under proper chain of custody documentation for analysis. The soil samples were collected during the soil gas probe installations on October 27, 2011. Results of the metals analysis are presented in Table 6.

The soil gas probes were allowed a week to equilibrate with the surrounding soils prior to sampling. Soil vapor sampling was conducted by connecting the 1/4 inch sampling tube exiting the ground surface at the sampling points to a glass sampling bulb fitted with Teflon stop cocks and a viton rubber sampling port. The bulb was connected in turn to a vacuum gauge, flow meter and portable sampling pump. Initially, both stop cocks are closed, to observe an absence of flow and a slight vacuum. This demonstrates that the sampling train on the far end of the bulb is leak tight (leak test). The first stop cock (pump end) is then opened. An absence of flow demonstrates that the sampling bulb itself is leak tight. The ground end of the bulb is then opened, and a flow of 150 ml/min is maintained for seven to ten purge volumes. During the sampling, an open container of Pentane or iso-Butylene is exposed to the sampling train. Any trace of either of these compounds detected in the sample indicates the intrusion of ambient air into the sampling train invalidating the results of the sample (leak test). The sampling bulbs were delivered by HGS to their stationary laboratory for analysis by GCMS for EPA Method 8260 volatile organic compounds (VOCs). The analysis also provided concentrations for the volatile fraction of aliphatic hydrocarbons in the C3 to C13 range. All of the samples were analyzed by HGS within 24 hours. Soil vapor samples were analyzed for all target compounds listed in section 3.1 of the Interim Guidance for Active Soil Gas Investigations. Results of the soil gas sampling are summarized in Table 3.

Groundwater Sampling

Fero obtained permits from the Los Angeles County Department of Public Health to construct three groundwater monitoring wells on the subject property (copies included in Attachment A). BC2

Environmental Corporation was subsequently retained to install the wells during the period from August 3 - 5, 2010. Well MW1 was installed southwest of the onsite building near the southern property line in an anticipated down gradient groundwater flow direction, well MW2 was located near the northwestern corner of the Site, and well MW3 was located near the northeastern corner of the Site. Wells MW1 & 2 were installed using a CME-75 drill rig fitted with 8 inch diameter hollow stem augers. Because of limitations due to overhead power lines and trees, well MW3 was installed with a limited access rig fitted with the same 8 inch diameter augers. Well locations are indicated on Figure 2.

Soil samples were obtained from each of the well boreholes at five foot intervals in an undisturbed state utilizing a stainless steel California modified split spoon drive sampler fitted with three stainless steel sleeves. Upon removing the soil from the specified depths and locations, the soil in the lead sample sleeve was subsequently sampled with an Easy Draw Syringe consistent with EPA Method 5035 low-level VOC sampling protocol. The syringe was inserted into the soil within the sample tube in such a way that no headspace was allowed and 5 grams of soil was retained in the syringe. The sample was then injected into a 40-ml vial containing preservative. This process was repeated four times for each sample location, resulting in four vials of soil in appropriate preservatives. The vials were immediately capped, appropriately labeled, stored in a cooler at a temperature near 4° C, and delivered at the end of the day under proper chain of custody documentation to Enviro-Chem, Inc. in Pomona, a State of California certified laboratory. Enviro-Chem analyzed all the soil samples for VOCs using EPA Method 8260b. The results of the laboratory analyses are summarized in Table 7.

The well borings were logged by a Fero geologist and were visually classified in the field in accordance with the Unified Soil Classification System (USCS) and American Society for Testing and Materials (ASTM) which include evaluations of moisture content, consistency, texture, and soil characteristics. The soils generally consisted of sands and silts. Soil samples were obtained at five foot intervals to a depth of 95 feet in all borings. Groundwater was encountered at a depth of approximately 98 feet in the well borings.

The monitoring wells were constructed of 2 inch diameter Schedule 40 PVC casing to a depth of 120 feet below grade (fbg) with a 30 foot screened interval. The screen consisted of 0.020 inch slotted pipe and the filter pack in the annular space to approximately 2 foot above the screened section consisted of #3 Monterey sand. Four to five feet of hydrated bentonite chips were paced on top of the sand pack and the annulus from the bentonite seal to approximately 1 fbg was filled (tremie method) with Portland type III cement slurry and the installations were completed at grade with concrete and a traffic-rated well vault.

On August 9, 2010, each of the wells were subsequently developed using a Smeal development rig. The development was conducted using a decontaminated suction bailer, a surging assembly and well pump until water flowed unhindered through the well screens of each well and the development water appeared free of soil fines. During the development process 110 gallons were removed from wells MW1 and MW2 and 55 gallons were removed from MW3. All development water was contained onsite in DOT approved water tight containers, the water was characterized and removed from the site for proper disposal on September 13, 2010.

On August 20, 2010, after the wells had time to stabilize, the depth to the water surface in each well was measured with electronic gauging equipment which allows an accuracy of 0.01 feet. Table 8 provides the gauging data. The well casings were surveyed on August 10, 2010 with respect to Mean Sea Level and proper lateral controls by Dulin & Boynton. The survey data, well location data and groundwater depth information were used in a contouring program to develop a planar representation of the water table surface to evaluate the groundwater flow direction and gradient. The representation is superimposed on Figure 2. The groundwater flow direction was slightly (approx. 11°) to the west of south under a gradient of approximately 0.0091 ft/ft.

An additional soil boring was conducted inside the building proximate to soil gas probes FVP4 on October 24 & 25, 2011 to place a groundwater monitoring well. The well installation is indicated as MW4 on Figure 3. The boring was conducted with a limited access CME 75 (because of overhead restrictions). The boring was conducted to 120 fbg and soil samples were collected at 5 foot intervals starting at 90 fbg because of its proximity to FVP4. Consistent with the RWQCB conditional approval, the boring was finished as a groundwater monitoring/VES well. A pilot hole was drilled with 8" augers followed by 10" augers to set the well. The well consists of a 4" PVC pipe with 0.020" slotted sections from 41.5 to 116.5 fbg. The boring annulus was filled to approximately 1 foot above the slotted section of the well with #3 Monterey sand. The space above the filter pack was filled with hydrated bentonite chips to 35 fbg and the annulus was filled from 35 fbg to approximately 1 fbg with neat cement, consistent with County of Los Angeles requirements. The well installation was finished at grade with a traffic rated road vault which was concreted in place. The well was installed consistent with a permit from the County. A schedule of the well installations is included as Table 9.

The borings were logged by a Fero geologist or engineer and were visually classified in the field in accordance with the Unified Soil Classification System (USCS) or American Society for Testing and Materials (ASTM) including; moisture, consistency, texture, and soil characteristics. All of the field work conducted as part of this investigation will be conducted consistent with an extension to the Health and Safety Plan in Attachment A. Soil cuttings from the boring operations were retained onsite in properly labeled, DOT approved drums until laboratory results were available and proper treatment/disposal options for the soils were determined.

Quarterly groundwater monitoring using all of the Site wells (MW1-4) was first conduced on December 23, 2011. Initial attempts to develop MW4 with a bailer and stainless steel pump were not as successful as hoped so the first sample collected from MW4 on December 23, 2011 was very turbid. Additional development occurred on January 10, 2012 which removed considerably more fines using a swab disc and suction bailer. A sample was collected following development and additional purging and those data were reported in a January 13, 2012 monitoring report to the RWQCB. The most recent groundwater monitoring was conducted on May 3, 2012. This monitoring event is the subject of Fero's, First Semi-Annual Groundwater Well Monitoring Report 2012, Continental Heat Treating, 10643 Norwalk Boulevard, Santa Fe Springs, California, (Site Id. No. 204GW00, SCP No. 1057), dated August 13, 2012.

During the sampling event, Fero gauged the elevation of groundwater in four wells on the site (MW1-MW4) using an electronic gauging device, which allowed a monitoring accuracy of 0.01 foot. At

each of the wells, the depth to groundwater measurements were made from the water surface to a survey mark etched in the casing. Well MW4 was installed on October 25, 2011 and at least one of the well tops needed to be adjusted as a result of onsite construction operations so a well survey was conducted on December 14, 2011 to tie the wellheads together to vertical and lateral controls. Elevation gauging data collected during the December 23, 2011 sampling event and for previous monitoring events are summarized in Table 8.

The groundwater elevations determined using the December 23, 2011 data were used to determine a surface which represents the local groundwater table and this surface was superimposed onto the base map (Figure 3). The soil type at the slotted section of MW4 was generally finer than the soils proximate to the screened sections of the other near surface wells which were sandier. In addition, well MW4 was installed with a limited access rig inside the building which made installation more difficult. Heaving sands at the screen depth apparently affected the efficiency of the filter pack placement thereby reducing the effectiveness of the pack and allowing more fines to the screen. As a result, groundwater flow through MW4 appears to be restricted slightly. The elevation data suggest a very slight mound at MW4. This should be reduced or explained with further well development and/or additional data from the former Exxon/Mobil site to the north. Groundwater elevation data collected on May 3, 2012 were contoured to generate elevation contours representing the water table elevation. The contours have been superimposed onto Figure 4. The resulting surface suggests a southerly flow direction under a gradient of approximately 0.0047 ft/ft.

Following gauging and prior to sampling, groundwater monitoring wells MW1-3 were purged of 25 gallons of water, the volume of which was based upon the volume of freestanding water in the wells and the observed stabilization of physical/chemical parameters, pH, color, conductivity, and temperature, had stabilized. The monitoring wells were purged with a Grundfos variable speed 120-volt AC powered two stage centrifugal Stainless Steel purge pump with discharge through 1/2 inch PVC and Teflon tubing. Groundwater was pumped from the monitoring wells at a rate of approximately 1 gallon per minute. Physical and chemical purge monitoring parameters were measured in the field at the discharge line of the pump.

Subsequent to purging each well, the pump rate was reduced to approximately 100 ml/min whereupon a representative sample of groundwater was collected from the discharge line using 40 ml. glass sample vials. Teflon lined caps were secured tightly onto the 40 ml vials and each was visually inspected to assure that zero headspace had been achieved. The sample vials containing groundwater from each well were immediately placed in an ice chest containing ice and transported for analysis to Enviro-Chem, Inc. in Pomona accompanied by appropriate Chain-of-Custody documentation. The groundwater samples were analyzed for Volatile Organic Compounds (VOCs) using EPA Method 8260B. Groundwater VOC analytical results from this and from previous events are summarized in Table 10. Selected organics concentrations are included on Figure 4.

CURRENT INVESTIGATIONS

The RWQCB requested further delineation of the soil matrix and soil vapor impacts at the Site. Based on previous investigations at the Site (data summarized in Tables 4-7), soil matrix sampling provided very little useful data related to subsurface organics impacts because of the volatile nature of the organics and the small samples collected so, to optimize the use of financial resources, Fero limited the additional soil matrix sampling for analytical testing during this investigation. Soil matrix samples were collected for analytical testing from 5 fbg to just above the water table on five foot intervals at monitoring well MW6, only. Field operations for the probe and well installations were conducted from July 9 until July 25, 2012.

Soil Gas Probe Installation and Sampling

Consistent with discussions at our meeting of January 12, 2012 and with the Approval letter, Fero installed 4 deep probe sets (FNP19, FNP20, FNP21 and FNP22) at locations indicated on Figure 5 at depths of 5, 15, 30, 60 & 85 fbg. In addition, soil gas probes were attached at 5 and 15 fbg to the deep well and at 30, 60, & 85 fbg to the middle well (MW6m, 130 – 140 screen depth) installed along the northern property line of the Site, north of the new addition to the building as indicated on Figure 5. The probe installations were attached in this way to assure a competent sanitary seal on both well installations. The original probe depth of 90 fbg was modified in the field to accommodate the capillary fringe. Fero discussed the installations with Cardno's project manager, who was at the Former Jalk Fee site, and we agreed that the deepest probe depth should be modified to 85 fbg to improve sample recovery.

The probe borings were conducted using a CME 75 or 85 drill rig fitted with 8" hollow stem auger flights. The borings for FNP21 and FNP22 were further conducted with a limited access CME 75 because of height restrictions at those locations. Soil samples were collected from each boring at 5 foot intervals starting at 5 fbg using a California modified split spoon sampler for lithologic evaluation. A log of each of the borings is included in Attachment A. Upon reaching 85 fbg in each of these deep borings, soil gas sampling probes were installed at the appropriate depths attached to a 1" diameter PVC pipe to maintain the appropriate sampling depth while the annular space was As indicated above, the probes consisted of small diameter (1/4 inch) perforated polyethylene tubing. Once installed, the annuli of the boreholes were finished as indicated above with coarse sand (#3 Monterey or equivalent) placed through the inside of the auger flights as they are being withdrawn to form an approximate 2 foot thick permeable sand pack around each of the perforated sections of the probes (to 1 foot above). The probes were sealed from each other and from the surface with hydrated bentonite and concrete. To avoid over saturation of the filter pack, the amount of water used to hydrate the bentonite seals was tailored to the thickness of the seal. The probe locations were finished at the surface with traffic rated well vaults. The well probes were installed in a like manner with the probes attached directly to the 4 inch PVC casing used for the well.

The soil gas probe installations were completed on July 23, 2012 and sampled on July 30, 2012, one week after the installations to allow the soil gas to equilibrate prior to sampling. Soil vapor sampling was conducted by connecting the 1/4 inch sampling tube exiting the ground surface at the sampling points to a glass sampling bulb fitted with Teflon stop cocks and a Viton rubber sampling port. The

bulb was connected in turn to a vacuum gauge, flow meter and portable sampling pump. Initially, both stop cocks are closed, to observe an absence of flow and a slight vacuum. This demonstrates that the sampling train on the far end of the bulb is leak tight (leak test). The first stop cock (pump end) is then opened. An absence of flow demonstrates that the sampling bulb itself is leak tight. The ground end of the bulb is then opened, and a flow of 150 ml/min is maintained for seven to ten purge volumes. During the sampling, an open container of Pentane or iso-Butylene is exposed to the sampling train. Any trace of either of these compounds detected in the sample indicates the intrusion of ambient air into the sampling train invalidating the results of the sample (leak test). The sampling bulbs will be delivered by HGS to their stationary laboratory for analysis by GCMS for EPA Method 8260B volatile organic compounds (VOCs). That analysis will also provide concentrations for the volatile fraction of aliphatic hydrocarbons. All of the samples will be analyzed by HGS within 24 hours. Soil vapor samples will be analyzed for all target compounds listed in section 3.1 of the *Interim Guidance for Active Soil Gas Investigations*. The soil vapor analytical results are presented in Table 11. Copies of the laboratory reports are included in Attachment B.

Well Installations and Sampling

Consistent with the conditional well installation approval in the Directive and with the Approval, two well clusters (MW5 and MW6) were installed at the Site. To remain consistent with the wells installed on the Jalk Fee property, Fero install all wells as single installations in separate boreholes and completed all of the wells with 4 inch PVC casings. The locations of the well clusters are indicated on Figure 4.

The wells were installed with either a CME-75 or CME-85, one set along the northern property line and one along the southern property line as indicated on Figure 4. The shallow borings at each location were conducted to 110 fbg and soil samples were collected at 5 foot intervals starting at 5 fbg for lithologic logging. A pilot hole was drilled at each location with 8" augers followed by 10" augers to set the well casings. The wells consisted of 4" PVC pipe with 0.020" slotted sections. The southern well (MW5) screen extended from 90 to 110 fbg. The northern water table well was installed with an extended screened interval from 20 to 110 fbg to allow for possible future use with a vapor extraction system. The boring annuli were filled to approximately 1 foot above the slotted section of the well with #3 Monterey sand and the space above the filter pack was filled with 4 to 5 feet of hydrated bentonite chips and the remaining annuli were filled to 1 fbg with neat cement, consistent with County of Los Angeles requirements. The well installations were finished at grade with a traffic rated road vault which were concreted in place. The well installations were permitted through the County of Los Angeles Department of Health Services. Copies of the permits are included in Attachment E.

Consistent with the Approval, Fero collected soil samples at five foot intervals in the northern well (MW6) for analytical testing. The soil samples were collected from the boring using a California modified split spoon sampler and subsequently resampled using EPA Method 5035 sampling techniques. The samples were properly labeled, placed in plastic bags and then in a cooler at or about 4° C. At the end of the day the samples were delivered under proper chain of custody documentation to Enviro-Chem Laboratory for analysis. The samples were analyzed for EPA Method 8260b

organics. The lab data are summarized in Table 12 and a copy of the laboratory report is included in Attachment C.

In an effort to obtain consistent data with the Jalk Fee site, the screened section of the deeper well casings at each location were modified to 160 to 170 fbg. The middle depths were likewise adjusted so that the screen sections extended from 130 to 140 fbg. The annuli to approximately 1 foot above the screen at each well installation were filled with #3 sand. Approximately 5 feet each annulus above the well screen pack was sealed with hydrated bentonite chips and the annulus above the bentonite chips to 1 foot below the surface will be filled with neat cement. All of the well locations were completed with well vaults. As builts of the well installations are attached on the borelogs included in Attachment A.

During installations, the middle depth wells proceeded as planned. Fero was able to collect reasonable soil samples to 140 fbg. The wells were set with the double pass installation technique described above. The deeper borings presented an issue related to sampling however. Heaving sands below approximately 140 fbg precluded collection of representative formation samples and caused the first of the deep wells (MW5) to be installed after a separate third pass. Because of the difficulties with this installation, Fero decided to install the northern (MW6) deep well with a single pass using plugged 10 inch augers and to install a casing with a pre-packed filter from 160 to 170 fbg. This allowed for the installation of a very effective monitoring well however, it did not allow for lithologic sampling below 140 feet. However, based on the heaving sands below 140 feet, the soil type consisted of primarily sands with some gravel.

The borings were logged by a Fero geologist or engineer who visually classified the soils in the field in accordance with the Unified Soil Classification System (USCS) or American Society for Testing and Materials (ASTM) including; moisture, consistency, texture, and soil characteristics. Borelogs of the well installations are attached hereto in Attachment A. All of the field work conducted as part of this investigation was conducted consistent with a Health and Safety Plan, a copy of which is attached in Attachment F. Soil cuttings from the boring operations were retained onsite in properly labeled, DOT approved roll off dumpsters and wash water generated during auger washing was retained onsite in DOT approved drums until laboratory results were available and proper treatment/disposal options for the soil and water were determined. The soils and water have been removed from the Site for offsite treatment.

The monitoring wells were developed during the three days of July 30, 2012 to August 1, 2012. Fero retained BC2 Environmental to develop the wells with a well swab, suction bailer and pump until the wells were free of fines and the turbidity was less than 10 ntu. Consistent with the Approval, Fero retained Dulin and Boynton to survey the new well locations on August 1, 2012. The survey data are provided in Attachment F. The wells were gauged on August 10, 2012. The gauging data are provided in Table 8.

Groundwater sampling will be conducted consistent with CHTs semiannual monitoring schedule and results of the sampling will be provided in future reports. The next sampling effort will be conducted in October at the same time as Cardno on the adjacent Former Jalk Fee Property. The monitoring

report for this upcoming October sampling will include elevation gauging data, flow contours, purge data, water quality data, iso-concentration contours, etc. consistent with prior submittals.

Indoor Vapor Sampling

To be conducted and reported on in the future consistent with the Approval.

Should you have any questions regarding the content of this site assessment work plan, please do not hesitate to call the undersigned at (714) 256-2737.

Respectfully

Rick President

RLF: slf [758subinvwp412a]

Table 1 Probe Vacuum

Continental Heat Treating, Inc.

10643 South Norwalk Boulevard, Santa Monica March 2, 2004

Depth	Vacuum
Sample ID (ft.)	(in. H2O)
FP1 5	1.0
15	1.1
30	0.8
45	0.6
60	0.4
FP2 5	2.5
15	2.5
30	2.4
45	1.7
60	1.4

Table 2
Soil Gas Concentrations
Continental Heat Treating, Inc.

10643 South Norwalk Boulevard, Santa Fe Springs March 16, 2004 & August 6, 2004 (µg/L)

Sample	Depth	Sampling					
ID	(ft)	Date	PCE	TCE	1,2-DCE	VC	HC
FP1	5	3/16/04	2,718	157	107	16	6,300
ГГІ	3	8/06/04	640	120	32	ND	15
		8/00/04	040	120	32	ND	13
	15	3/16/04	2,351	136	ND	29	7,700
		8/06/04	2,602	251	328	45	738
	30	3/16/04	1,335	43	16	46	7,500
		8/06/04	2,792	422	445	225	4,345
	45	3/16/04	1,517	54	41	57	8,500
	-	8/06/04	1,831	235	428	217	6,516
	60	3/16/04	934	43	33	63	8,000
		8/06/04	1,441	194	309	331	15,873
FP2	5	3/16/04	154	32	12	11	4,000
		8/06/04	7.7	1.4	ND	ND	ND
	15(eq.)	3/16/04	3.9	ND	ND	ND	23
	(1)	8/06/04	1,881	142	ND	1.4	126
	30	3/16/04	972	80	54	21	12,000
		8/06/04	96	29	57	24	1,226
	45	3/16/04	1,241	48	14	42	8,500
		8/06/04	1,439	159	200	201	9,218
	60	3/16/04	660	49	22	12	12,000
		8/06/04	985	112	84	132	14,888

ND = not detected at laboratory detection limit.

Table 3 Hydro-Geo Spectrum Data

LOCATION-	Date Sampled	1,2-DCE	TCE	PCE	HC	1,1-DCE	VC	Chloroform	VOA
depth(ft)		µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L
FP1-5	08-Nov-11	24	175	4774		0.5			
FP1-15			175	1771	N	0.3	N	1.7	N
	08-Nov-11	17	96	1728	N	0.4	N	1.5	N
FP1-30	08-Nov-11	27	81	1871	274	0.4	N	1	N
FP1-45	08-Nov-11	224	105	1384	1065	3.2	N	0.4	N
FP1-60	08-Nov-11	170	101	1737	6715	21	N	N	N
FVP1-5	05-Nov-11	73	107	872	3347	13	N	N	N
FVP1-15	05-Nov-11	1.4	59	427	N	N	N	N	N
FVP1-30	05-Nov-11	233	109	669	7375	32	N	N	N
FVP1-60	05-Nov-11	318	89	768	9089	39	N	N	N
FVP1-90	05-Nov-11	91	135	1143	3520	14	N	N	N
FP2-5	08-Nov-11	1.8	18	534	N	N	N	1.1	N
FP2-15	08-Nov-11	9.7	54	1005	N	N	N	1.5	N
FP2-30	08-Nov-11	N	22	1288	152	N	N	N	N
FP2-45	08-Nov-11	99	80	1197	1138	7	N	N	N
FP2-60	08-Nov-11	62	75	1020	5049	11	N	N	N
FVP2-5	05-Nov-11	4.4	100	3905	6201	N	27	N	N
FVP2-15	05-Nov-11	5.5	84	12742					
FVP2-30					7166	N	16	N	N
	05-Nov-11	6.7	90	7479	6910	N	24	N	N
FVP2-60	05-Nov-11	10	71	2687	8796	N	40	N	N
FVP2-90	05-Nov-11	8.5	51	2122	6392	N	35	N	N
FVP3-5	05-Nov-11	2.2	1.5	25	N	N	N	N	N
FVP3-15	05-Nov-11	513	149	867	590	1.2	N	N	N
FVP3-30	05-Nov-11	1130	186	1512	3540	9.8	N	N	N
FVP3-60	05-Nov-11	755	124	898	4837	20	N	N	N
FVP3-90	05-Nov-11	318	63	1033	7830	31	N	N	N
FVP4-5	05-Nov-11	16	70	430	N	0.4	N	1.4	N
FVP4-15	05-Nov-11	15	76	1381	N	N	N	1.7	N
FVP4-30	05-Nov-11	34	41	576	3593	6.1	N	0.6	N
FVP4-60	05-Nov-11	21	48	336	40386	N	143	N	N
FVP4-90	05-Nov-11	27	45	346	31636	N	121	N	N
FVP5-5 NF	04-Nov-11			0,10	0,000	- "	101	1	N
FVP5-15 NF	04-Nov-11								N
FVP6-5 LF	04-Nov-11	N	0.5	88	N	N	N	N	N
FVP6-15	04-Nov-11	N	6.2	1420	N	N	N	N	N
FVP7-5	04-Nov-11	9	27	152	N		N	N	N
FVP7-15	04-Nov-11	3.9	24	372	N	N N	N	N	N
FVP7-15 FVP8-5								-	
	04-Nov-11	15	139	696	N	N	N	N	N
FVP8-15	04-Nov-11	1.6	70	1587	N	N	N	N	N
FVP9-5	04-Nov-11	N	3	92	N	N	N	N	N
FVP9-15	04-Nov-11	N	N	16	N	N	N	N	N
FVP10-5	04-Nov-11	76	140	1889	N	N	N	N	N
FVP10-15	04-Nov-11	103	226	3077	N	N	N	N	N
FVP13-5	04-Nov-11	2.9	62	1510	N	N	N	N	N
FVP13-15	04-Nov-11	18	181	2741	N	N	N	N	N
FVP14-5 NF	04-Nov-11								
FVP14-15	04-Nov-11	2.7	17	5876	N	N	N	N	N
FVP15-5	04-Nov-11	N	3.2	249	N	N	N	N	N
FVP15-15	04-Nov-11	N	57	5163	N	N	N	N	N
FVP16-5	04-Nov-11	0.4	37	3316	N	0.5	N	N	N
VP16-15	04-Nov-11	4.4	82	8202	N	N	N	N	N
FVP17-5	04-Nov-11	21	120	1426	N	N	N	N	N
FVP17-15	04-Nov-11	96	342	9160	N	N	N	N	N
FVP18-5	04-Nov-11	81	245	723	N	N	N	N	N
FVP18-15	04-Nov-11	48	260	1798	407	1	N	N	N
						N			N
FVP19-5	09-Nov-11	N	0.1	15	N	N	N	N	N
FVP19-15 leak	09-Nov-11	N	0.7	16	N	N	N	N	
FVP20-5	04-Nov-11	N	N	5.6	N	N	N	N	N
FVP20-15	04-Nov-11	N	1.4	186	N	N	N	N	N

LOCATION-	Date Sampled	1.1-DCE	1,2-DCE	TCE	PCE	HC	VOC
depth (ft)		μg/L	μg/L	µg/L	μg/L	μg/L	μg/L
FNP19-5	30-Jul-12	7.8	6.4	11	100	N	N
FNP19-15	30-Jul-12	1.7	5.7	29	465	1523	N
FNP19-30	30-Jul-12	3.2	11	8.2	491	1568	N
FNP19-60	30-Jul-12	18	123	32	121	5749	N
FNP19-85	30-Jul-12	46	6.2	7	92	8580	N
FNP20-5	30-Jul-12	18	2.9	7.4	6.1	9833	N
FNP20-15	30-Jul-12	N	N N	0.8	22	223	N
FNP20-30	30-Jul-12	1	N	2.4	6.3	630	N
FNP20-60	30-Jul-12	21	12	29	7.7	8146	N
FNP20-85	30-Jul-12	49	30	4.4	7.4	13724	N
FNP21-5	30-Jul-12	2.3	N	8.2	74	2169	N
FNP21-15	30-Jul-12	4.1	7.4	7.5	170	2747	N
FNP21-30	30-Jul-12	2.2	1.4	10	152	2365	N
FNP21-60	30-Jul-12	15	9.6	43	88	8398	N
FNP21-85	30-Jul-12	27	39	12	75	9256	N
FNP22-5	30-Jul-12	3.8	14	10	162	1948	N
FNP22-15	30-Jul-12	4.5	11	25	858	N	N
FNP22-30	30-Jul-12	3	5.9	19	620	N	N
FNP22-60	30-Jul-12	0.8	0.9	N	5.9	277	N
FNP22-85	30-Jul-12	46	51	8.4	166	10829	N
MW6-5	30-Jul-12	N	45	234	7309	N	N
MW6-15	30-Jul-12	N	80	255	7172	N	N
MW6-30	30-Jul-12	4.6	130	134	2838	2053	N
MW6-60	30-Jul-12	12	236	95	962	3282	N
MW6-85	30-Jul-12	18	535	64	342	5756	N
VP5-5	30-Jul-12	N	N	N	N	N	N
VP5-15	30-Jul-12	N	N	N	N	N	N

Table 4
Soil Sampling Analytical Results - VOCs
Continental Heat Treat

10643 Norwalk Boulevard, Santa Fe Springs, CA
October 21 - 26, 2011
(mg/Kg)

Sample

Sample ID/D41-	1.1 DCD	-:- 1.2 DCE	DCE	TOE	D1D	DID	NI 1-41-	D1D	1 1 2 2 TCA
ID/Depth	1,1-DCP	cis 1,2-DCE	PCE	TCE	n-ButylB	sec-ButylB	Naphth	n-PropylB	1,1,2,2-TCA
FVP1-5	0.005	nd	0.126	0.024	nd	nd	nd	nd	nd
FVP1-15	nd	nd	nd	nd	nd	nd	nd	nd	nd
FVP1-30	nd	0.012	0.158	0.024	nd	nd	nd	nd	nd
FVP1-60	nd	nd	nd	nd	nd	nd	nd	nd	nd
FVP1-90	0.027	nd	nd	nd	nd	nd	nd	nd	nd
FVP2-5	nd	nd	0.116	nd	nd	nd	nd	nd	nd
FVP2-15	nd	nd	nd	nd	nd	nd	nd	nd	nd
FVP2-30	nd	nd	nd	nd	nd	nd	nd	nd	nd
FVP2-60	nd	nd	0.006	nd	nd	nd	nd	nd	nd
FVP2-90	nd	nd	0.008	nd	nd	nd	nd	nd	nd
FVP3-5	nd	nd	0.076	nd	nd	nd	nd	nd	nd
FVP3-15	nd	nd	0.027	0.006	nd	nd	nd	nd	nd
FVP3-30	nd	nd	0.281	0.051	nd	nd	nd	nd	nd
FVP3-60	nd	nd	nd	nd	nd	nd	nd	nd	nd
FVP3-90	nd	nd	nd	nd	0.028	0.025	0.068	0.047	0.031
FVP4-5	nd	nd	0.072	0.007	nd	nd	nd	nd	nd
FVP4-15	nd	nd	nd	nd	nd	nd	nd	nd	nd
FVP4-30	nd	0.009	0.067	0.006	nd	nd	nd	nd	nd
FVP4-60	nd	0.213	0.132	0.044	nd	nd	nd	nd	nd
F <u>VP4-90</u>	nd	nd	nd	nd	nd	nd	nd	nd	nd
D.CD D: 11		DOE D: 11 1 1	DOE T		TOT T : 11	11 5	1	3.7 .1	37 1.1 1

DCP – Dichloropropene, DCE=Dichloroethylene, PCE=Tetrachloroethylene, TCE=Trichloroethylene, B – Benzene, Napth – Naphthalene, TCA=Trichloroethane

Table 5
Soil Sampling Analytical Results - TPHcc
Continental Heat Treat

10643 Norwalk Boulevard, Santa Fe Springs, CA
October 19 - 27, 2011
(mg/Kg)

Sample	Gasoline	Diesel	Oil
ID/Depth	(C4-C10)	(C11-C22)	(C23-C35)
FVP1-5	nd	nd	nd
FVP1-15	nd	nd	nd
FVP1-30	nd	nd	nd
FVP1-60	nd	nd	nd
FVP1-90	23.4	75.0	92.3
FVP2-5	nd	nd	nd
FVP2-15	nd	nd	nd
FVP2-30	nd	nd	nd
FVP2-60	nd	nd	nd
FVP2-90	nd	nd	nd
FVP3-5	nd	nd	nd
FVP3-15	nd	nd	nd
FVP3-30	nd	nd	nd
FVP3-60	nd	nd	nd
FVP3-90	nd	nd	nd
FVP4-5	nd	nd	nd
FVP4-15	nd	nd	nd
FVP4-30	nd	nd	nd
FVP4-60	nd	nd	nd
FVP4-90	nd	nd	nd
FVP7-5	nd	nd	nd
FVP8-15	nd	nd	nd
FVP10-30	nd	nd	nd
FVP13-60	nd	nd	nd

Table 6 Soil Metals Concentrations

Continental Heat Treat

10643 Norwalk Boulevard, Santa Fe Springs, CA

October 27, 2011 (mg/Kg)

Sample Id. EPA-RSLs (ind)	Ba 190,000	Cr 150,000	Cr+6 5.6	Co 23	Cu 3,100	Pb 400	Ni 3,800	V 390	Zn 2,300	
FVP11-3'	99.3	17.1	nd	6.22	15.4	3.68	10.3	29.0	43.5	
FVP12-3'	88.4	17.2	nd	6.78	12.0	3.37	11.4	31.7	38.4	
PVP1a-3'	96.7	15.8	nd	6.01	12.1	3.10	10.2	28.4	37.7	

Ba - Barium Cr- Chromium Co- Cobalt Cu- Copper Ni- Nickel Pb- Lead V- Vanadium Zn- Zinc ND- Not detected at laboratory detection limit RSL = Regional Screening Level – industrial, formerly PRG, EPA Region 9

Table 7
Soil Analytical Results
Continental Heat Treating, 10643 Norwalk Boulevard, Santa Fe Springs
August 3-5, 2010

Sample Point/ Depth	Benzene (mg/Kg)	sec-butyl Benzene (mg/Kg)	cis-1,2-DCE (mg/Kg)	n-propyl Benzene (mg/Kg)	PCE (mg/Kg)	TCE (mg/Kg)
Дери	(mg/Kg)	(mg/Kg)	(Ilig/Kg)	(Ilig/Kg)	(Ilig/Kg)	(Ilig/Kg)
MW1-5'	ND	ND	ND	ND	0.021	0.005
MW1-10'	ND	ND	ND	ND	0.028	0.009
MW1-15'	ND	ND	ND	ND	0.003	ND
MW1-20'	ND	ND	ND	ND	0.017	0.005
MW1-25'	ND	ND	ND	ND	0.078	0.013
MW1-30'	ND	ND	0.022	ND	0.119	0.028
MW1-35'	ND	ND	0.068	ND	0.040	0.020
MW1-40'	ND	ND	ND	ND	ND	ND
MW1-45'	ND	ND	ND	ND	ND	ND
MW1-50'	ND	ND	ND	ND	ND	ND
MW1-55'	ND	ND	0.004	ND	ND	ND
MW1-60'	ND	ND	ND	ND	ND	ND
MW1-65'	ND	ND	ND	ND	ND	ND
MW1-70'	ND	ND	ND	ND	ND	ND
MW1-75'	ND	ND	ND	ND	ND	ND
MW1-80'	ND	ND	ND	ND	ND	ND
MW1-85'	ND	0.008	ND	ND	ND	ND
MW1-90' MW1-95'	ND ND	0.003 ND	0.002 0.009	ND ND	ND ND	ND ND
MW2-5'	ND ND	ND ND	ND	ND ND	0.433	0.009
MW2-10'	ND ND	ND ND	ND ND	ND ND	0.665	0.009
MW2-15'	ND	ND	ND	ND	2.31	0.014
MW2-20'	ND	ND	0.007	ND	1.54	0.015
MW2-25'	ND	ND	0.012	ND	1.85	0.018
MW2-30'	ND	ND	0.015	ND	1.26	0.011
MW2-35'	ND	ND	0.096	ND	3.25	0.038
MW2-40'	ND	ND	ND	ND	0.003	ND
MW2-45'	0.005	ND	0.287	ND	2.07	0.058
MW2-50'	ND	ND	ND	ND	0.007	ND
MW2-55'	ND	ND	0.003	ND	0.010	ND
MW2-60'	ND	ND	ND	ND	0.008	ND
MW2-65'	ND	ND	0.005	ND	0.015	ND
MW2-70'	ND	ND	0.006	ND	0.009	ND
MW2-75'	ND	ND	0.040	ND	0.051	ND
MW2-80'	ND	ND	ND	ND	0.003	ND
MW2-85'	ND	ND	ND	ND	ND	ND
MW2-90'	ND	ND	0.003	ND	0.002	ND
MW2-95'	ND	ND	0.004	ND	0.002	ND NB
MW3-5'	ND	ND	ND	ND	ND	ND
MW3-10' MW3-15'	ND ND	ND ND	ND ND	ND ND	0.004 0.005	ND ND
MW3-20'	ND ND	ND ND	ND ND	ND ND	ND	ND ND
MW3-25'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW3-30'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW3-35'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW3-40'	ND	ND	0.002	ND	0.020	0.003
MW3-45'	ND	ND	0.002	ND	0.017	0.003
MW3-50'	ND	ND	ND	ND	0.015	0.009
MW3-55'	ND	ND	0.003	ND	0.005	0.007
MW3-60'	ND	ND	0.029	ND	0.031	0.072
MW3-65'	ND	ND	ND	ND	ND	ND
MW3-70'	ND	ND	ND	ND	ND	ND
MW3-75'	ND	ND	0.033	ND	ND	0.004
MW3-80'	ND	ND	ND	0.002	ND	ND
MW3-85'	ND	ND	ND	0.025	ND	ND
MW3-90'	ND	ND	ND	ND	ND	ND
MW3-95'	ND	ND	ND	ND	ND	ND

ND = Not Detected at laboratory detection limits, DCE = Dichloroethene, PCE = Tetrachloroethene, TCE = Trichloroethene.

Table 8Summary of Groundwater Elevation

Continental Heat Treating

10643 Norwalk Boulevard, Santa Fe Springs, California (Site Id. No. 204GW00, SCP No. 1057)

Well Number	Date	TOC Elevation (ft MSL)	Depth to Groundwater (ft)	Groundwater Elevation (ft MSL)
Nullibel	Date	(It MSL)	Oroundwater (11)	(It MSL)
MW1	3/29/11	137.07	97.16	39.91
	6/15/11		94.50	42.57
	9/20/11		91.81	45.26
	12/23/11	137.08	90.13	46.95
	5/3/12		88.46	48.62
	8/10/12		88.71	48.37
MW2	3/29/11	137.43	96.45	40.98
141 44 2	6/15/11	137.43	93.74	43.69
	9/20/11		91.06	46.37
	12/23/11	138.04	90.05	47.99
	5/3/12	130.04	88.43	49.61
	8/10/12		88.65	49.39
MW3	3/29/11	137.71	96.42	41.29
	6/15/11		93.94	43.77
	9/20/11		91.12	46.59
	12/23/11	137.03	89.43	47.60
	5/3/12		87.69	49.34
	8/10/12		87.80	49.23
MW4	12/23/11	137.55	89.43	48.12
	5/3/12		87.69	49.86
	8/10/12		86.37	51.18
MW5s	8/10/12	137.49	88.85	48.64
MW5m	8/10/12	137.37	89.49	47.88
MW5d	8/10/12	137.54	88.79	48.75
MW6s	8/10/12	137.84	88.41	49.43
MW6m	8/10/12	137.95	88.08	49.87
MW6d	8/10/12	138.01	87.26	50.75

Table 9 Well and Probe Schedule Continental Heat Treat

well/probe No.	MW-1	MW-2	MW-3	MW-4	MW-5s	MW-5m	MW-5d	MW-6s	MW-6m
installation date	8/3/2010	8/4/2010	8/5/2010	10/24/2011	7/9/2012	7/10/2012	7/11/2012	7/19/2012	7/20/2012
elevation (ft MSL)	137.08	138.04	137.73	137.55	137.49	137.37	137.54	137.84	137.95
depth of boring (ft)	120	120	120	117	110	140	170	110	140
casing diameter (in)	4	4	4	4	4	4	4	4	4
depth to top of screen (ft)	90	90	90	42	90	130	160	20	130
depth to bottom of screen (ft)	120	120	369.5	117	110	140	170	110	140
vapor probe depths (ft)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	30
									60
									85
	MW-6d	FVP1	FVP2	FVP3	FVP4	FNP19	ENIDAO	FNP21	5ND00
	WW Oa	LALT	FVP2	rvr5	rvr4	LINE 19	FNP20	FINPZI	FNP22
installation date			10/26/2011						
installation date elevation (ft MSL)									
	7/24/2012	10/19/2011	10/26/2011	10/20/2011	10/21/2011	7/16/2012	7/17/2012	7/18/2012	7/23/2012
elevation (ft MSL)	7/24/2012 138.01	10/19/2011 n/a	10/26/2011 n/a	10/20/2011 n/a	10/21/2011 n/a	7/16/2012 n/a	7/17/2012 n/a	7/18/2012 n/a	7/23/2012 n/a
elevation (ft MSL) depth of boring (ft)	7/24/2012 138.01 170	10/19/2011 n/a 90	10/26/2011 n/a 90	10/20/2011 n/a 90	10/21/2011 n/a 90	7/16/2012 n/a 85	7/17/2012 n/a 85	7/18/2012 n/a 85	7/23/2012 n/a 85
elevation (ft MSL) depth of boring (ft) casing diameter (in)	7/24/2012 138.01 170 4	10/19/2011 n/a 90 n/a	10/26/2011 n/a 90 n/a	10/20/2011 n/a 90 n/a	10/21/2011 n/a 90 n/a n/a	7/16/2012 n/a 85 n/a	7/17/2012 n/a 85 n/a	7/18/2012 n/a 85 n/a	7/23/2012 n/a 85 n/a
elevation (ft MSL) depth of boring (ft) casing diameter (in) depth to top of screen (ft)	7/24/2012 138.01 170 4 160	10/19/2011 n/a 90 n/a n/a	10/26/2011 n/a 90 n/a n/a	10/20/2011 n/a 90 n/a n/a	10/21/2011 n/a 90 n/a n/a	7/16/2012 n/a 85 n/a n/a	7/17/2012 n/a 85 n/a n/a	7/18/2012 n/a 85 n/a n/a	7/23/2012 n/a 85 n/a n/a
elevation (ft MSL) depth of boring (ft) casing diameter (in) depth to top of screen (ft) depth to bottom of screen (ft)	7/24/2012 138.01 170 4 160 170	10/19/2011 n/a 90 n/a n/a n/a	10/26/2011 n/a 90 n/a n/a n/a	10/20/2011 n/a 90 n/a n/a n/a	10/21/2011 n/a 90 n/a n/a n/a	7/16/2012 n/a 85 n/a n/a n/a	7/17/2012 n/a 85 n/a n/a n/a	7/18/2012 n/a 85 n/a n/a n/a	7/23/2012 n/a 85 n/a n/a n/a
elevation (ft MSL) depth of boring (ft) casing diameter (in) depth to top of screen (ft) depth to bottom of screen (ft)	7/24/2012 138.01 170 4 160 170	10/19/2011 n/a 90 n/a n/a n/a	10/26/2011 n/a 90 n/a n/a n/a	10/20/2011 n/a 90 n/a n/a n/a	10/21/2011 n/a 90 n/a n/a n/a	7/16/2012 n/a 85 n/a n/a n/a	7/17/2012 n/a 85 n/a n/a n/a	7/18/2012 n/a 85 n/a n/a n/a	7/23/2012 n/a 85 n/a n/a n/a
elevation (ft MSL) depth of boring (ft) casing diameter (in) depth to top of screen (ft) depth to bottom of screen (ft)	7/24/2012 138.01 170 4 160 170	10/19/2011 n/a 90 n/a n/a n/a 5	10/26/2011 n/a 90 n/a n/a n/a 5	10/20/2011 n/a 90 n/a n/a n/a 5	10/21/2011 n/a 90 n/a n/a n/a 5	7/16/2012 n/a 85 n/a n/a n/a 5	7/17/2012 n/a 85 n/a n/a n/a 5	7/18/2012 n/a 85 n/a n/a n/a 5	7/23/2012 n/a 85 n/a n/a n/a 5 15

Table 10 Summary of Groundwater Analyses **Continental Heat Treating**

10643 Norwalk Boulevard, Santa Fe Springs, California (Site Id. No. 204GW00, SCP No. 1057)

 $\begin{array}{c} (\mu g/L) \\ (DL-0.5~\mu g/L) \end{array}$

Well	Date	Ben	Chl	1,4- DCB	1,1- DCA	cis-1,2- DCE	t-1,2- DCE	1,2- DCA	1,1- DCE	НСВ	NAP	1,1,2,2- TCA	PCE	1,2,3- TCB	1,2,4- TCB	TCE	TFM	VC
*****	Dute	Deli	CIII	ВСВ	БСП	DCL	DCL	ВСП	DCL	псь	11/11	1011	TCL	TCB	TCB	TCL	11.11	
MW1	8/20/10	ND	0.97	ND	17.3	12.2	ND	113	224	ND	ND	ND	184	ND	ND	154	2.79	5.96
	3/29/11	ND	1.02	ND	17.7	600	14.9	ND	184	ND	ND	ND	210	ND	ND	170	5.54	27.8
	6/15/11	ND	1.50	ND	14.1	85.1	2.06	ND	117	ND	ND	ND	228	ND	ND	167	5.51	3.13
	9/23/11	ND	4.20	ND	25.3	118	2.14	ND	191	ND	ND	ND	182	ND	ND	164	13.2	3.50
	12/23/11	ND	3.33	ND	16.3	147	1.92	2.66	85.3	ND	1.90	ND	201	ND	ND	164	6.74	1.51
	5/3/12	ND	6.15	ND	32.2	433	6.80	4.96	191	ND	ND	ND	196	ND	ND	224	13.6	10.0
MW2	8/20/10	ND	1.71	0.78	21.8	59.6	0.76	5.43	126	1.14	2.47	0.92	235	2.72	1.24	178	9.49	0.89
	3/29/11	ND	1.89	ND	22.8	55.1	ND	2.74	161	1.14	ND	ND	214	ND	ND	158	10.0	0.53
	6/15/11	ND	3.07	ND	24.2	85.3	1.53	4.83	149	ND	ND	ND	338	ND	ND	172	13.1	3.09
	9/23/11	ND	5.08	ND	28.1	100	2.09	5.88	177	ND	ND	ND	245	ND	ND	161	21.3	4.01
	12/23/11	ND	3.66	ND	18.3	53.0	0.65	2.69	77.6	NC	ND	ND	252	ND	ND	148	10/6	ND
	5/3/12	ND	8.72	ND	41.9	92.8	0.54	5.21	194	ND	ND	ND	177	ND	ND	163	24.2	ND
MW3	8/20/10	4.50	ND	ND	6.19	38.9	4.13	ND	57.1	1.18	2.43	ND	56.9	3.26	1.29	160	1.22	ND
IVI VV 3	3/29/11	3.17	ND	ND	11.7	49.0	4.13	ND	185	ND	2.43 ND	ND	82.2	3.20 ND	ND	200	4.75	3.78
	6/15/11	1.01	0.91	ND	12.1	41.8	11.2	ND	124	ND	ND	ND	151	ND	ND	149	5.26	1.71
	9/23/11	ND	1.30	ND	14.3	43.6	13.6	ND	146	ND	ND	ND	120	ND	ND	130	7.45	1.71
	12/23/11	ND	1.61	ND	9.57	32.6	8.33	ND	62.1	ND	ND	ND	143	ND	ND	133	5.33	ND
	5/3/12	ND	5.81	ND	25.4	77.8	15.7	0.65	190	ND	ND	ND	137	ND	ND	165	13.3	1.35
	3/3/12	ND	3.61	ND	23.4	77.0	13.7	0.03	190	ND	ND	ND	137	ND	ND	103	13.3	1.55
MW4	12/23/11	ND	0.54	ND	3.61	172	5.47	ND	16.9	ND	3.05	ND	36.0	ND	ND	21.9	ND	8.20
141 44 4	1/10/12	ND	ND	ND	5.08	62.2	2.88	ND	25.6	ND	3.22	ND	70.1	ND	ND	47.5	ND	3.51
	5/3/12	ND	2.29	ND	20.9	284	9.63	0.54	148	ND	ND	ND	93.0	ND	ND	90.3	3.51	18.5
	11112	עויו	2.29	IND	20.9	204	7.03	0.54	170	ND	ND	ND	75.0	ND	IND	70.5	5.51	10.5

DL - detection limit, ND = Not Detected at DL, Ben - Benzene, Chl - Chloroform, DCB - Dichlorobenzene, DCA - Dichloroethane, DCE - Dichlorethene, HCB - Hexachlorobutadiene, NAP - Naphalene, TCA -Tetracholoroethane, PCE - Tetrachloroethene, TCB - Trichlorobenzene, TCE - Trichloroethene, TFM - Trichlorofluoromethane, VC - Vinyl Chloride

Table 10 (cont.) Summary of Groundwater Analyses

Continental Heat Treating

10643 Norwalk Boulevard, Santa Fe Springs, California (Site Id. No. 204GW00, SCP No. 1057)

 $(\mu g/L)$ (DL – 0.5 $\mu g/L$)

Well	Date	Toluene	Sec- BBen	Ethyl Ben	IPB	4 IPT	n PBen	1,2,4- TMB	Xylene	111TCA
MW1	12/23/11 5/3/12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
MW2	12/23/11 5/3/12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.14
MW3	12/23/11 5/3/12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
MW4	12/23/11 1/10/12 5/3/12	1.50 ND ND	3.72 2.71 2.18	1.42 1.61 1.41	7.02 6.04 4.14	0.65 ND ND	7.03 6.30 3.17	ND 1.31 ND	ND 1.20 ND	ND

DL – detection limit, ND = Not Detected at DL, sec-BBen – sec-Butylbenzene, EthylBen – Ethylbenzene, IPB - Isopropylbenzene, 4 IPT – 4- Isopropyltoluene, n PBen – n-Propylbenzene

Table 11
Soil Gas Concentrations
Continental Heat Treating, Inc.

10643 South Norwalk Boulevard, Santa Fe Springs
July 30, 2012
(µg/L)

 Sample ID	Depth (ft)	Sampling Date	PCE	TCE	1,2-DCE	1,1-DCE	НС
FNP19	5	7/30/12	100	11	6.4	7.8	ND
	15	7/30/12	465	29	5.7	1.7	1,523
	30	7/30/12	491	8.2	11	3.2	1,568
	60	7/30/12	121	32	123	18	5,749
	85	7/30/12	92	7	6.2	46	8,580
FNP20	5	7/30/12	6.1	7.4	2.9	18	9,833
	15	7/30/12	22	0.8	ND	ND	223
	30	7/30/12	6.3	2.4	ND	1	630
	60	7/30/12	7.7	29	12	21	8,146
	85	7/30/12	7.4	4.4	30	49	13,724
FNP21	5	7/30/12	74	8.2	ND	2.3	2,169
	15	7/30/12	170	7.5	7.4	4.1	2,747
	30	7/30/12	152	10	1.4	2.2	2,365
	60	7/30/12	88	43	9.6	15	8,398
	85	7/30/12	75	12	39	27	9,256
FNP22	5	7/30/12	162	10	14	3.8	1,948
	15	7/30/12	858	25	11	4.5	ND
	30	7/30/12	620	19	5.9	3	ND
	60	7/30/12	5.9	ND	0.9	0.8	277
	85	7/30/12	166	8.4	51	46	10,829

ND = not detected at laboratory detection limit.

Table 11 (cont.)

Soil Gas Concentrations

Continental Heat Treating, Inc.

10643 South Norwalk Boulevard, Santa Fe Springs July 30, 2012 (µg/L)

Sample ID	Depth (ft)	Sampling Date	PCE	TCE	1,2-DCE	1,1-DCE	НС
MW6	5	7/30/12	7,309	234	45	ND	ND
	15	7/30/12	7,172	255	80	ND	ND
	30	7/30/12	2,838	134	130	4.6	2,053
	60	7/30/12	962	95	236	12	3,282
	85	7/30/12	342	64	535	18	5,756
VP5	5	7/30/12	ND	ND	ND	ND	ND

ND

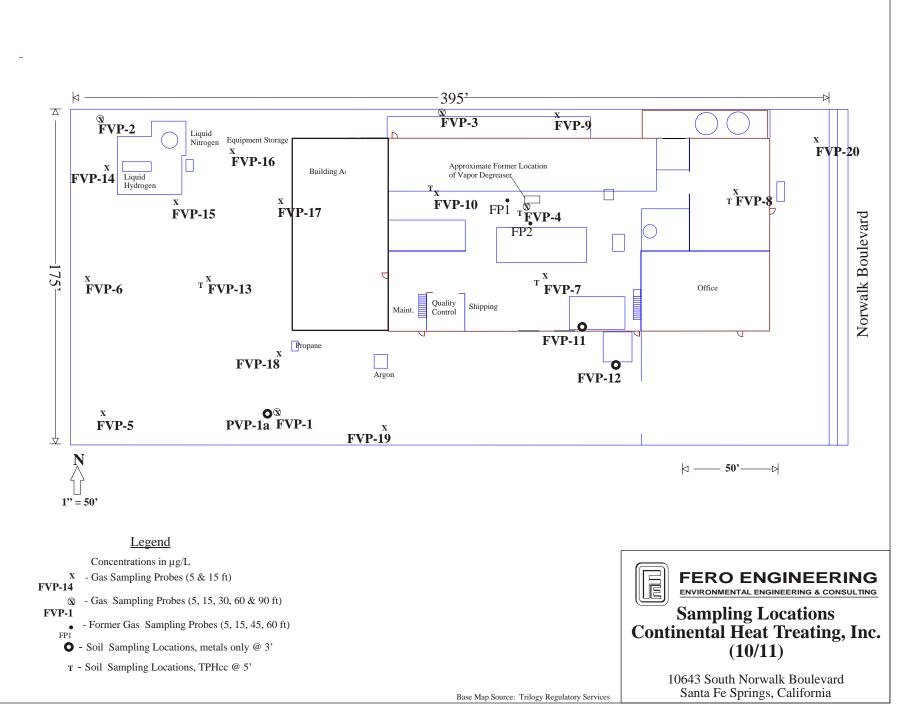
ND

ND

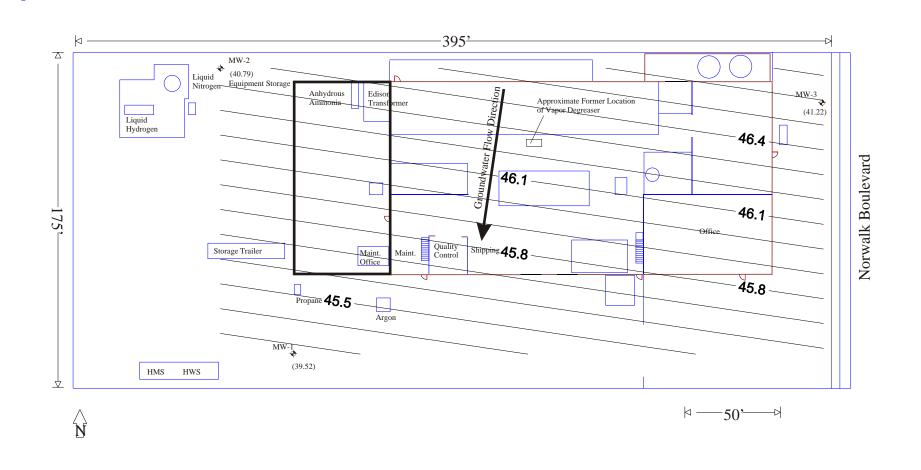
ND

ND = not detected at laboratory detection limit.

7/30/12


ND

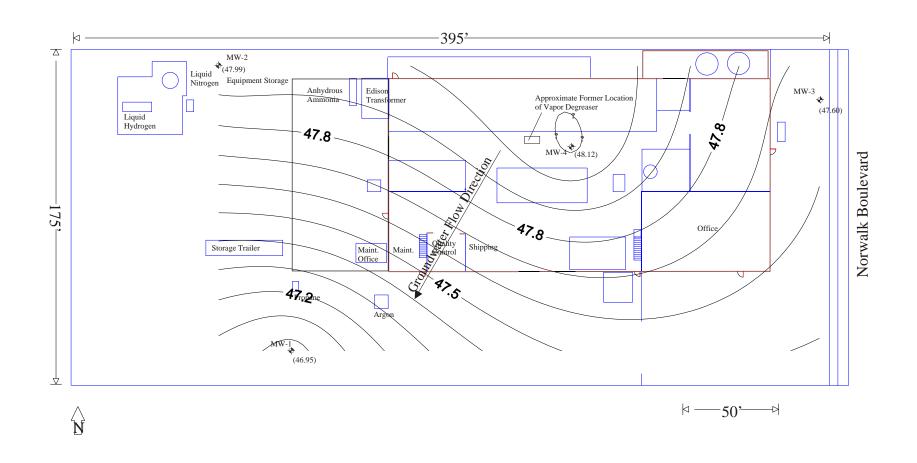
15


Table 12 Soil Sampling Analytical Results - VOCs Continental Heat Treat 10643 Norwalk Boulevard, Santa Fe Springs, CA July 20, 2012 (mg/Kg)

Sample ID	Depth	cis 1,2-DCE	PCE	TCE	Benzene
MW6m	5	nd	0.295	nd	nd
	10	0.027	1.30	0.082	nd
	15	0.022	1.80	0.057	nd
	20	0.026	1.59	0.074	nd
	25	0.136	2.60	0.170	nd
	30	0.185	3.51	0.158	0.007
	35	0.120	2.51	0.206	0.013
	40	0.049	0.097	0.010	nd
	45	0.013	0.016	nd	nd
	50	0.005	0.014	nd	nd
	55	0.031	0.086	0.007	nd
	60	nd	0.011	nd	nd
	65	0.079	0.041	0.006	nd
	70	0.216	0.115	0.180	nd
	75	0.117	0.193	0.030	nd
	80	0.008	0.053	nd	nd
	85	nd	0.027	nd	nd
	90	0.126	0.041	0.035	nd

DCE - Dichloroethylene, PCE - Tetrachloroethylene, TCE - Trichloroethylene nd - Non-detect @ 0.005 mg/Kg

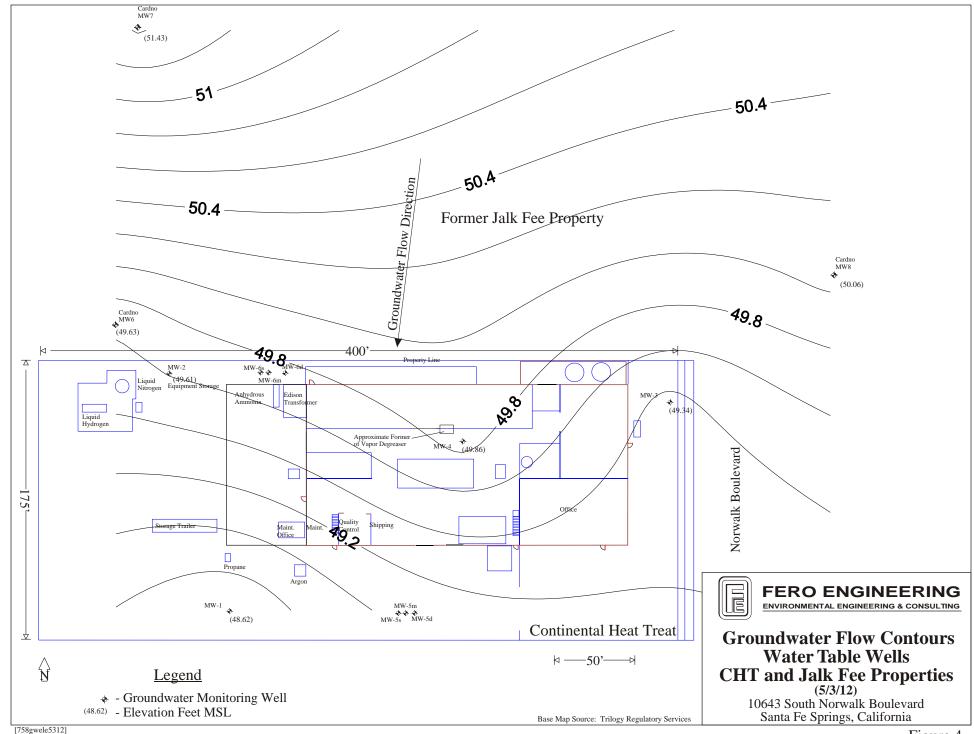
[758samploc2011]


Legend

Groundwater Monitoring Well

(39.52) - Groundwater Elevation in Feet MSL

Base Map Source: Trilogy Regulatory Services


Legend

Groundwater Monitoring Well

(46.95) - Elevation Feet MSL

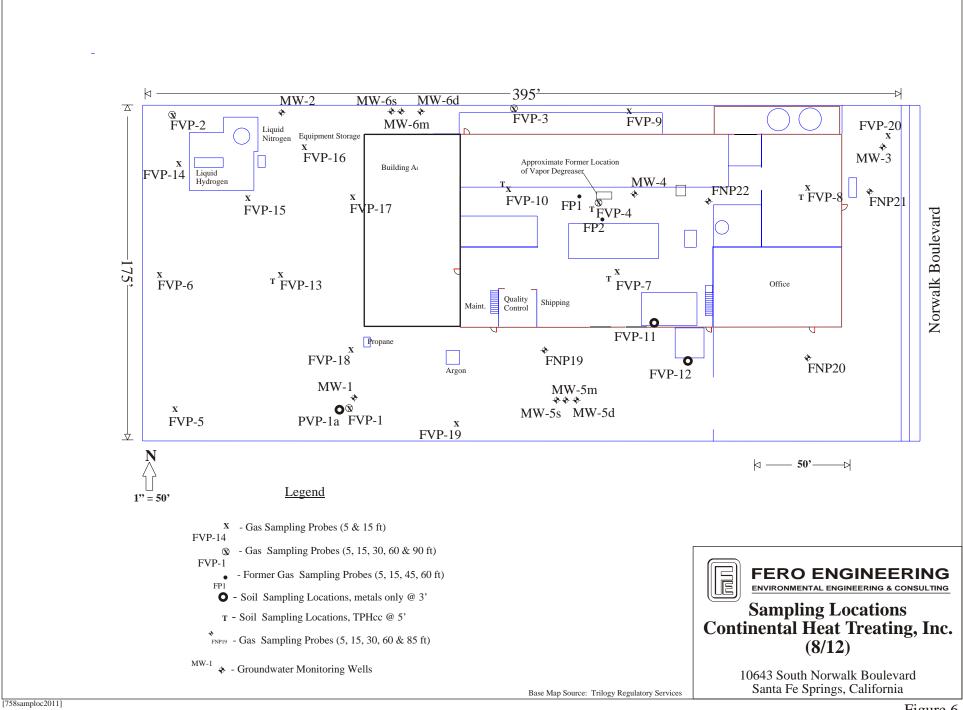
Base Map Source: Trilogy Regulatory Services

Legend

X - Former Gas Sampling Probes (5 & 15 ft) FVP-14

- Former Gas Sampling Probes (5, 15, 30, 60 & 90 ft)

FVP-1


- Former Gas Sampling Probes (5, 15, 45, 60 ft) FP1

• - Gas Sampling Probes (5, 15, 30, 60, 85 ft) Added 7/2012

FNP19

Base Map Source: Trilogy Regulatory Services

Attachment A

Borelogs

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP19 SHEET 1 of 4

Santa Fe Springs, California

DATE 7/16/12 **BY** RLF

BORING LOCATION/CONDITIONS: 12' South and 155' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2.

EQUIPMENT: PID for H&S monitoring

	SA	MPI	LE		PLE	
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, holt
<u> </u>	m	1	B	20	B	DESCRIPTION Concrete
-					ppm	(lithology based on adj. MW5)
- 5'— -		х	14/20	SM		Brown silty fine sand, medium dense, moist, no odor
- -)'		Х	15/20	SM		Brown silty fine sand, medium dense, moist, no odor
- 5'		X	17/20	SP		Light Brown fine sand, dense, moist, no odor
- - 0'		X	14/16	SP		Tan fine sand, dense, dry, no odor
5'—		X	25/26	SP		Tan fine sand, dense, dry, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP19 SHEET 2 of 4

Santa Fe Springs, California

DATE 7/16/12 BY RLF

BORING LOCATION/CONDITIONS: 12' South and 155' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

X 24/26 SP

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	IONITORING ACKGROUND/ SAM	Probe Schedule: 5'=Gm,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
3	B	2	B	O	Σ α	DESCRIPTION
		X	19/27	ML		Light brown sandy silt, dense, sl. moist, no odor
		X	19/30	SP		Tan sand, loose, sl. moist, no odor
-)'		х	14/21	SC		Brown sandy clay, stiff, dry, no odor
- 5!		X	27/32	ML		Brown sandy silt, dense, moist, no odor

Tan fine sand, dense, sl. moist, slight oily odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP19 SHEET 3 of 4

Santa Fe Springs, California

DATE 7/16/12 **BY** RLF

BORING LOCATION/CONDITIONS: 12' South and 155' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

X 17/20 SP

EQUIPMENT: PID for H&S monitoring

			LQUI	LI IVII	LIVE	guirounion esser for the	EQUIPMENT: CME 85 with Split Spoon Sampler		
	SA	MP.	LE		PLE		SpoonSampler		
DEPTH (FT.) BULK	ULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE		Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt		
	B	U	B	Si	M BA	DESC	CRIPTION		
5'		X	29/39	SP	ppm	Tan fine to medium sand, dense, sl. moist,	no odor		
)'		X	29/34	ML		Tan clayey silt, dense, sl. moist, no odor			
5'		х	31/33	SP		Tan fine to medium sand sand, dense, sl.	moist, no odor		
0'		X	33/39	SP		Gray fine to coarse sand with gravel to 3/	78", dense, moist, no odor		

Brown fine to coarse sand with gravel to 3/4", dense, moist, sl. oily odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP19 SHEET 4 of 4

Santa Fe Springs, California

DATE 7/16/12 **BY** RLF

BORING LOCATION/CONDITIONS: 12' South and 155' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

24/29 SP

X 25/33 SP

854

90'-

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	ONITORING ACKGROUND/ SAMPI	Probe Schedule: 5'=Grm,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
O	В	2	B	Si	M B	DESCRIPTION
					ppm	

Gray fine to coarse sand, dense, sl. moist, fuel smell

Gray fine to coarse sand, dense, sl. moist, fuel smell

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP20 SHEET 1 of 4

Santa Fe Springs, California

DATE 7/17/12 BY JBP

BC2.

BORING LOCATION/CONDITIONS:

16' South and 18' W of

SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

Chaistar

EQUIPMENT:

PID for H&S monitoring

	SA	MP	LE		PLE	
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Gm,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt DESCRIPTION
-					ppm	Concrete
5'—		х	19/20	ML		Brown sandy silt, medium dense, slightly moist, no odor
0'—		X	20/20	SM		Medium brown silty fine sand, dense, slightly moist, no odor
- - 5'—		х	19/25	SM		Brown silty fine sand, dense, dry, no odor
0'-		х	22/29	ML		Tan fine sandy silt, dense, dry, no odor
- - !5'—		x	16/29	MI.		Light brown fine sandy silt, dense, dry, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP20 SHEET 2 of 4

Santa Fe Springs, California

DATE_7/17/12 BY_JBP

BORING LOCATION/CONDITIONS: 16' South and 18' W of

SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

X 19/23 SP

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MP	LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
DE	BC BC	5	BL	Cr	MC	DESCRIPTION
-					ppm	
- - - -		х	20/25	SM		Lt. brown silty fine sand, dense, dry, no odor
- 5'— -		х	29/30	SM		Lt. brown silty fine sand, dense, dry, no odor
- - - -		х	29/33	ML		Grey silty fine sand, dense, moist, no odor
- -5!—		X	12/19	SC		Rusty brown sandy clay, dense, sl. moist, no odor

Rusty tan fine to coarse sand, dense, sl. moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP20 SHEET 3 of 4

Santa Fe Springs, California

DATE 7/17/12 BY JBP

BORING LOCATION/CONDITIONS: 16' South and 18' W of

SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

50 SP

FOLLIPMENT: PID for H&S manitoring

	SA	MPI	LE		LE	EQUIPMENT: CME 85 with Split Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
1	_			10	ppm	DESCRIPTION
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		X	24/29	SP		Tan fine to medium sand, dense, sl. moist, no odor
		X	10/24	ML		Brown sandy silt, dense, moist, no odor
1 44 - 1 - 1		X	17/22	SP		Grey fine to medium sand, dense, moist, no odor
-)!		X	29/31	SP		Grey fine to medium sand, dense, moist, no odor

Grey fine to medium sand with some gravel, dense, moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP20 SHEET 4 of 4

Santa Fe Springs, California

DATE 7/17/12 **BY** JBP

BORING LOCATION/CONDITIONS: 16' South and 18' W of

SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MP	LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAM	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt DESCRIPTION
-					ppm	DESCRIPTION
- 80'		X	29/36	SP		Gray fine to coarse sand with some gravel, dense, sl. moist, strong solvent odor
- - - - -		X	24/27	SP		Gray fine to coarse sand with some gravel, dense, sl. moist, strong solvent odor
- - - 05'						
-						

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP21 SHEET 1 of 4

Santa Fe Springs, California

DATE 7/18/12 BY RLF

BORING LOCATION/CONDITIONS:

14' E and 30' S of the NE SAMPLE METHOD Drive/

building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2.

SAMPLE

EQUIPMENT: PID for H&S monitoring

	DI.	1,44			교	
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	SCS LASSIFICATION	MONITORING BACKGROUND/ SAMPL	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
a	В	n	B	50	B Z	DESCRIPTION
1					ppm	Concrete (lithology based on adj. MW3)
5'—		X		SM		Rusty brown sandy silt, medium dense, slightly moist, no odor
10'—		X		SM		Rusty brown sandy silt, medium dense, slightly moist, no odor
15'—		х		ML		Light brown silt, medium dense, sl. moist, no odor
20'—		X		ML		Light brown silt, dense, sl. moist, no odor
25'		X		ML		Brown silty very fine sand, dense, sl. moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP21 SHEET 2 of 4

Santa Fe Springs, California

DATE 7/18/12 **BY** RLF

BORING LOCATION/CONDITIONS: 14' E and 30' S of the NE

SAMPLE METHOD Drive/

building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

EQUIPMENT:

PID for H&S monitoring

BC2

				IPWII		EQUIPN	MENT: CME 75 with Split Spoon Sampler
	SA	MPI	LE		IPLE		Spoottsampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	ONITORING ACKGROUND/ SAM	Probe Scheo 60'=Brwn.,8 Vault: 10'	dule: 5'=Gm,15'=Blu.,30'=Yel., 5'=Rd. '' traffic rated, water tight, bolt
a	B	٦	В	50	M B	DESCRIPTIO	ON .
0'		x		ML		Medium brown silt, dense, sl. moist, no odor	
5'		Х		ML		Light brown silty very fine sand, dense, sl. moist, no	odor
-)'		х		ML		Light brown silt, dense, sl. moist, no odor	
- 5'		X		ML		Light brown fine sandy silt, dense, sl. moist, no odor	

Reddish brown fine sandy silt, dense, sl. moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP21SHEET 3 of 4

Santa Fe Springs, California

DATE 7/18/12 **BY** RLF

BORING LOCATION/CONDITIONS: 14' E and 30' S of the NE SAMPLE METHOD Drive/

building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 75 with Split

	SA	MPI	E		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAM	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt DESCRIPTION
					ppm	DESCRIPTION
- - 55'		х		SP		Brown silty fine to medium sand, dense, sl. moist, no odor
- 60' <u> </u>		Х		CL		Light brown silty clay, stiff, sl. moist, no odor
- 55'		X		SP		Olive tan fine to medium sand, dense, sl. moist, no odor
- - 70'		x		SP		Olive tan fine sand, dense, sl. moist, no odor

Olive silt, medium dense, moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP21 SHEET 4 of 4

Santa Fe Springs, California

DATE 7/18/12 **BY** RLF

BORING LOCATION/CONDITIONS: 14' E and 30' S of the NE

SAMPLE METHOD Drive/

building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 75 with Split

	SA	MPI	LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
1					ppm	DESCRIPTION
- -)'		X		SP		Gray fine sand, dense, sl. moist, strong hydrocarbon odor
		Х		SP		Gray fine to medium sand, dense, sl. moist, strong hydrocarbon ordor
-						
1 1						

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP22 SHEET 1 of 4

Santa Fe Springs, California

DATE 7/23/12 **BY** JBP

BORING LOCATION/CONDITIONS:

70' west and 35' south of SAMPLE METHOD Drive/

the NE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2.

EQUIPMENT: PID for H&S monitoring

	SAMPLE		LE		PLE	
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Grn, 15'=Blu., 30'=Yel., 60'=Brwn., 85'=Rd. Vault: 10" traffic rated, water tight, bolt DESCRIPTION
					ppm	Concrete
5'—		X	7/9	SM		Brown fine sandy silt, medium dense, slightly moist, no odor
0'		X	7/13	SM		Brown fine sandy silt, medium dense, slightly moist, no odor
5'—		х	11/14	SP		Tan fine sand, dense, slightly moist, no odor
20'—		х	10/13	ML	0	Brown silt, stiff, dry, no odor
25!		x	12/15	ML	0	Brown silt, stiff, sl. moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10-758 JOB NO.

SITE:

10643 So. Norwalk Boulevard

BORING FNP22 SHEET 2 of 4

Santa Fe Springs, California

DATE 7/23/12 **BY** RLF

BORING LOCATION/CONDITIONS: 70' west and 35' south of SAMPLE METHOD Drive/

the NE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 75 with Split

BC2

	SAN		LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	JSCS	MONITORING BACKGROUND/ SAMPLE	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt
				20	ppm	DESCRIPTION
- - - - -		х	9/12	ML		Brown silt, stiff, sl. moist, no odor
5'		х	i 1/12	ML		Light brown silt, stiff, sl. moist, no odor
-) <u>'</u> -		X	14/15	SM		Lt. brown fine sandy silt, dense, moist, no odor
- - 5'		Х	12/16	ML		Light brown clayey silt, dense, sl. moist, no odor

Tan gray fine sandy silt, dense, sl. moist, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10-758 JOB NO.

SITE:

10643 So. Norwalk Boulevard

BORING FNP22 SHEET 3 of 4

Santa Fe Springs, California

DATE 7/23/12 **BY** RLF

BORING LOCATION/CONDITIONS: 70' west and 35' south of

SAMPLE METHOD Drive/

the NE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 75 with Split

	SA	MP	LE		PLE	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAM	Probe Schedule: 5'=Grn,15'=Blu.,30'=Yel., 60'=Brwn.,85'=Rd. Vault: 10" traffic rated, water tight, bolt DESCRIPTION
					ppm	DESCRIPTION
- - 55'		х	15/16	SM		Tan fine to medium sand, dense, sl. moist, no odor
50'		Х	16/14	CL		Brown silty clay, stiff, sl. moist, no odor
55'		х	12/14	SP		Grey fine sand, dense, moist, hydrocarbon odor
- '0'		х	8/11	SP		Gray fine sand, dense, sl. moist, sl. hydrocarbon odor
-		v		CD		Gray fine to medium sand, dense, sl. moist, sl. hydrocarbon odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING FNP22 SHEET 4 of 4

Santa Fe Springs, California

DATE 7/23/12 **BY** RLF

BORING LOCATION/CONDITIONS: 70' west and 35' south of SAMPLE METHOD Drive/

the NE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

PID for H&S monitoring

EQUIDMENT, CME 75 with Solit

			- (EQUIPMENT: CME /3 WILLISPIIL		
	SA	MP	LE		PLE		Spoon Sampler		
(1.1.) HI 177	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	ONITORING ACKGROUND/ SAM	Probe Schedule: 60'=Brwn., 85'=Rd Vault: 10" traff	5'=Gm,15'=Blu.,30'=Yel., l. ic rated, water tight, bolt		
	B	ר	B	50	B B	DESCRIPTION			
-					ppm				
_									
4		Х	14/60	SP		Gray fine to medium sand, dense, sl. moist, sl. hydrocarb	oon odor		
9 9 0									
		X	14/27	SP		Gray fine to coarse sand with some gravel, dense, moist,	strong hydrocar-		
-						bon ordor	, and any an evaluation		
2									
_									
-									
-									
-									
-									
-									

BORING LOG

FERO ENGINEERING

ENVIRONMENTAL ENGINEERING & CONSULTING

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5s SHEET 1 of 5

Santa Fe Springs, California

DATE 7/9/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 158' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2.

EQUIPMENT: PID for H&S monitoring

	SA	MP	LE		PLE								
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	SCS LASSIFICATION	SCS LASSIFICATION	SCS LASSIFICATION	JSCS LASSIFICATION	JSCS LASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt DESCRIPTION	- Concrete - Grout (nea - No. 3 San	
_	_	-		20	Z H	Concrete							
-					ppm	Contract							
-						Brown silty fine sand, medium dense, moist, no odor							
5'—		X	14/20	SM		Brown sirty line sand, medium dense, moist, no odor							
18													
-		17		CN		Brown silty fine sand, medium dense, moist, no odor							
0'—		X	15/20	SIVI									
5'		X	17/20	SP		Light Brown fine sand, dense, moist, no odor							
		33	1,7,20										
-													
0'-		X	14/16	SP		Tan fine sand, dense, dry, no odor							
4													
25'_		X	25/26	SP		Tan fine sand, dense, dry, no odor							

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5s SHEET 2 of 5

Santa Fe Springs, California

DATE 7/9/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 158' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SAMI	PLE	MPLE		Spoon Sampler
PTH (FT.)	ILK VDISTURBED	OWS/ FT	ASSIFICATION DISTORING CKGROUND/ SAI	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DE	BU	5	BL	50	MO	DESCRIPTION	
-			11		ppm -		
-							
- 10		Х	19/27	ML		Light brown sandy silt, dense, sl. moist, no odor	
-							
-							
-		X	19/30	SP		Tan sand, loose, sl. moist, no odor	
,						t an sand, noise, st. moist, no odoi	
-							
-		X	14/21	SC		Brown sandy clay, stiff, dry, no odor	
3 /1						Diown suitaly entry, strin, ary, no sate.	
-							
		X	27/32	ML		Brown sandy silt, dense, moist, no odor	
-						•	
-							
		X	24/26	SP		Tan fine sand, dense, sl. moist, slight oily odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5s SHEET 3 of 5

Santa Fe Springs, California

DATE 7/9/12 By J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 158' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

Ondista

EQUIPMENT:

SAMPLE W

PID for H&S monitoring

	SAMI	LE	- 2		
SPTH (FT.)	JLK NDISTURBED	OWS/FT	CS ASSIFICATION ONTORING CCKGROUND/ SAM	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DE	BUI	5	BLC	SC	MOI	DESCRIPTION	VIIIA VIIII
_	-	_	-	10	28	DESCRIPTION	
1.4	-				ppm		
-							
-	-						
-		X	20.00	SP		Tan fine to medium sand, dense, sl. moist, no odor	
55'		A	29/39	SP			
1			10.16				
60'		X	29/34	ML		Ton alayay ailt dansa al maist as adan	
-						Tan clayey silt, dense, sl. moist, no odor	
1/2							
-	-						
-		v		on.		Tan fine to medium sand sand, dense, sl. moist, no odor	
65'		X	31/33	SP			
70'		X	33/39	SP		Gray fine to coarse sand with gravel to 3/8", dense, moist, no odor	
-			11-3				
-	-						
-							
-				an		Brown fine to coarse sand with gravel to 3/4", dense, moist, sl. oily odor	
75'	1	X	17/20	SP			1////

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5s SHEET 4 of 5

Santa Fe Springs, California

DATE 7/9/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 158' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

GO - CO	mpler	Spoon Sam	MPLE	Æ	MPL	SA	
Casing: 4" PVC thish thread w/ 02" slots	Concrete Grout (neat cement) No. 3 Sand	- Gr	Casing:	WS/	INDISTURBED	IULK	EPTH (FT.)

DEPT	BUL	UND	BLO	USCS	MON	DESCRIPTION	
,					ppm		
80'—		x	24/29	SP		Grey fine to coarse sand, dense, moist, fuel odor	
85!—		х	25/33	SP		Grey fine to coarse sand, dense, moist, fuel odor	
90'—		х	27/33	SP		Grey fine to coarse sand, dense, moist, fuel odor	
95'—		x	27/33	ML		Grey silt, dense, sl. saturated, no odor	
- 10 0'		X	16/23	SP		Gray fine to medium sand, dense, saturated, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating **JOB NO.** 10-758 SITE: 10643 So. Norwalk Boulevard BORING MW5s SHEET 5 of 5 Santa Fe Springs, California DATE 7/9/12 BY J. Petersen BORING LOCATION/CONDITIONS: 43' South and 158' West of SAMPLE METHOD Drive/ the SE building corner Undisturbed DRILLERS: BC2 OBSERVERS/SAMPLERS: JBP **EQUIPMENT:** PID for H&S monitoring **EQUIPMENT:** CME 85 with Split Spoon Sampler SAMPLE BACKGROUND/ SAMPLE USCS CLASSIFICATION UNDISTURBED - Concrete MONITORING DEPTH (FT.) BLOWS/ FT - Grout (neat cement) Casing: 4" PVC flush thread w/ .02" slots - No. 3 Sand Vault: 12" traffic rated, water tight, bolt DESCRIPTION ppm Gray fine to medium sand, dense, saturated, no odor 105 X 22/44 SP Gray fine to medium sand, dense, saturated, no odor 110 X 22/44 SP

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5mSHEET 1 of 6

Santa Fe Springs, California

DATE 7/10/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 153' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2.

EQUIPMENT: PID for H&S monitoring

	SA	MP	LE		PLE			
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	SCS LASSIFICATION	MONITORING SACKGROUND/ SAM	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt DESCRIPTION	- Concrete - Grout (neat cement) - No. 3 Sand
				- 0		Concrete		
1					ppm			
5'—		X	14/20	SM		Brown silty fine sand, medium dense, moist, no odor		
.7								
- 10'—		X	15/20	SM		Brown silty fine sand, medium dense, moist, no odor		
-						Link Danner Constant Lawrence and		
15'— - -		X	17/20	SP		Light Brown fine sand, dense, moist, no odor		
- 20'—		х	14/16	SP		Tan fine sand, dense, dry, no odor		
- 25'—		X	25/26	SP		Tan fine sand, dense, dry, no odor		

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5mSHEET 2 of 6

Santa Fe Springs, California

DATE 7/10/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 153' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

BC2

	SA	MPLI	E	IPLE		Spoon Sampler
PTH (FT.)	LK	DISTURBED	OWS/ FT SS SSIFICATION	NITORING CKGROUND/ SAM	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

BU	5	BL	CE	MO	DESCRIPTION	
				ppm		
	X	19/27	ML		Light brown sandy silt, dense, sl. moist, no odor	
		1				
	X	19/30	SP		m 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			1		Tan sand, loose, sl. moist, no odor	
	X	14/21	SC		D 1 1 1 600 1 1	
					Brown sandy clay, stiff, dry, no odor	
	X	27/32	ML		December 1, 2h days are 2n and 1	
					Brown sandy silt, dense, moist, no odor	
	1					
	X	24/26	SP		Tan fine sand, dense, sl. moist, slight oily odor	V////

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10-758 JOB NO.

SITE:

10643 So. Norwalk Boulevard

BORING MW5mSHEET 3 of 6

Santa Fe Springs, California

DATE 7/10/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 153' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT: PID for H&S monitoring

	SA	MPI	LE		APLE		
DEPTH (FT.)	LK	UNDISTURBED	OWS/ FT	CS ASSIFICATION	ONITORING CKGROUND/ SAM	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
DE	BU	5	BI	CL	BA	DESCRIPTION	
1					ppm		

-				ppm		
1						
	X	29/39	SP		Tan fine to medium sand, dense, sl. moist, no odor	
-						
-						
	х	29/34	ML		Tan clayey silt, dense, sl. moist, no odor	
	X	31/33	SP		Tan fine to medium sand sand, dense, sl. moist, no odor	
-						
-					Gray fine to coarse sand with gravel to 3/8", dense, moist, no odor	
	X	33/39	SP		Gray fine to coarse said with graver to 576, dense, moist, no odor	
-						
-			an		Brown fine to coarse sand with gravel to 3/4", dense, moist, sl. oily odor	
	X	17/20	SP		And the second state and a second sec	11111

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5mSHEET 4 of 6

Santa Fe Springs, California

DATE 7/10/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 153' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

Ondiota

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

BC2

	SA	MPI	Æ	MPLE		Spoon Sampler
PTH (FT.)	LK	DISTURBED	OWS/ FT	SSASSIFICATION NITORING CKGROUND/SA	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

JLK	ION	0	CS	CK	Table 12 Hame acc, water again, son	
BI	5	BI	CIC	M(BA	DESCRIPTION	
				ppm		
	v	24/20	CD		Grey fine to coarse sand, dense, moist, fuel odor	
	Λ	24/29	SF			
	X	25/33	SP		Grey fine to coarse sand, dense, moist, fuel odor	
	X	27/33	SP		Grey fine to coarse sand, dense, moist, fuel odor	
	х	27/33	ML		Grey silt, dense, sl. saturated, no odor	
	Х	16/23	SP		Gray fine to medium sand, dense, saturated, no odor	
	BULK	x	X 24/29 X 25/33 X 27/33	X 24/29 SP X 25/33 SP X 27/33 SP	X 24/29 SP X 25/33 SP X 27/33 ML	X 24/29 SP Grey fine to coarse sand, dense, moist, fuel odor X 25/33 SP Grey fine to coarse sand, dense, moist, fuel odor X 27/33 SP Grey fine to coarse sand, dense, moist, fuel odor Grey fine to coarse sand, dense, moist, fuel odor Grey silt, dense, sl. saturated, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10-758 JOB NO.

SITE:

10643 So. Norwalk Boulevard

BORING MW5m SHEET 5 of 6

Santa Fe Springs, California

DATE 7/10/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 153' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

BC2 DRILLERS:

EQUIPMENT:

SAMPLE =

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

1 3	DIMINI DE	1	
EPTH (FT.)	ULK NDISTURBED LOWS/ FT CS	CASING: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DE	BU	5	BL	CL	MO	DESCRIPTION	
- 4					ppm		
- 05' -		Х	22/44	SP		Gray fine to medium sand, dense, saturated, no odor	
- 10'_ -		X	22/44	SP		Gray fine to medium sand, dense, saturated, no odor	
5'		Х	29/50	SP		Gray fine to medium sand, dense, saturated, no odor	
- !0' -		х	29/31	SP		Gray fine to medium sand, dense, saturated, no odor	
25'		X	29/44	ML		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5mSHEET 6 of 6

Santa Fe Springs, California

DATE 7/10/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 153' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SAMPLE		MPLE		MPLE		IPLE	Spoon Sar	on Sampler	
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt DESCRIPTION	Concrete Grout (neat cement) No. 3 Sand			
-					ppm	DESCRIPTION				
-										
13 0' -		X	19/20	SP		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor				
13 5' -		X	15/22	SP		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor				
-										
140'		X	17/21	SP		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor				
1										
-										

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5d SHEET 1 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2.

EQUIPMENT: PID for H&S monitoring

	SA	MPI	LE		IPLE			
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	SCS LASSIFICATION	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
1000						Concrete		
1					ppm			
-								
5'—		х	14/20	SM		Brown silty fine sand, medium dense, moist, no odor		
_		Λ	14/20	SIVI				
-								
0'-		X	15/20	SM		Brown silty fine sand, medium dense, moist, no odor		
-								
-					1			
5' <u></u>		Х	17/20	SP		Light Brown fine sand, dense, moist, no odor		
-		7.	17720	31				
					-			
20'-		X	14/16	SP		Tan fine sand, dense, dry, no odor		
-								
-								
25'		v	25/26	ÇD		Tan fine sand, dense, dry, no odor		

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5d SHEET 2 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

Spoon Sampler

				7	SAM	
_		BED		LIOI	G /Q/	
(FT.		UR	/FT	ICA	RIN	
DEPTH (FT.)	X	JNDISTURBED	SLOWS/ FT	SCS	TONITORING ACKGROUND/ SAM	
E	SULK	Z	Ä	SCS	IO AC	

SAMPLE

Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt

- Concrete

-Grout (neat cement)

- No. 3 Sand

DE	BUI	S	BL	USC CL.	MO	DESCRIPTION	VIIIN VII					
=					2 =	DESCRIPTION						
-					ppm							
114				1	-							
-												
-				leo.	1	Tinhthumus saduallt danna di analat un alan						
)!		X	19/27	ML		Light brown sandy silt, dense, sl. moist, no odor						
-												
-												
-												
-			1	93,								
5!		X	19/30	SP		Toward lase of action and a						
-	511					Tan sand, loose, sl. moist, no odor						
-												
_												
-												
)'		X	14/21	SC		D 1 1 1 ('00 1 1						
-				-					-		Brown sandy clay, stiff, dry, no odor	
-												
_												
-				100								
51		X	27/32	MI								
						Brown sandy silt, dense, moist, no odor						
				JUJ.								
)'		v	24/26	SP		Tan fine sand, dense, sl. moist, slight oily odor						
		1	144/40	DI			V///// V/					

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5d SHEET 3 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

75'___ X 17/20 SP

EQUIPMENT: PID for H&S monitoring

	SA	MPI	E		MPLE		
DEPTH (FT.)	Л.К	UNDISTURBED	BLOWS/ FT	USCS	ONITORING CKGROUND/ SAM	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
DI	BUI	D	B	Si	M(BA	DESCRIPTION	
					ppm	Tan fine to medium sand dense st moist no odor	

	x	29/39	SP	Tan fine to medium sand, dense, sl. moist, no odor
	х	29/34	ML	Tan clayey silt, dense, sl. moist, no odor
-	х	31/33	SP	Tan fine to medium sand sand, dense, sl. moist, no odor
-	х	33/39	SP	Gray fine to coarse sand with gravel to 3/8", dense, moist, no odor
-	X	17/20	SP	Brown fine to coarse sand with gravel to 3/4", dense, moist, sl. oily odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5d SHEET 4 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

SAMPLE

DRILLERS:

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

BC2

	Sixi-II LL	B B		
EPTH (FT.)	ULK NDISTURBED LOWS/ FT	SCS LASSIFICATION ONITORING ACKGROUND/ SAM	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DE	BI	5	BI	CC	MC	DESCRIPTION	
					ppm		
- 80'		х	24/29	SP	e A	Grey fine to coarse sand, dense, moist, fuel odor	
- - - 85'		х	25/33	SP		Grey fine to coarse sand, dense, moist, fuel odor	
00'		х	27/33	SP		Grey fine to coarse sand, dense, moist, fuel odor	
5'	-	х	27/33	ML		Grey silt, dense, sl. saturated, no odor	
100′		х	16/23	SP		Gray fine to medium sand, dense, saturated, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5d SHEET 5 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

BC2

	SAM	PLE	MPLE		Spoon Sampler
PTH (FT.)	LK	OWS/ FT	ASSIFICATION ONTORING CKGROUND/ SAN	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DEPI	BUL	UND	BLO	SCS	MONI		
D	B	D	B	50	M B	DESCRIPTION	
-					ppm		
-							
105'		X	22/44	SP		Gray fine to medium sand, dense, saturated, no odor	
-							
-		37	Corne	O.D.			
10'_		X	22/44	SP		Gray fine to medium sand, dense, saturated, no odor	
-							
- 15'		X	29/50	SP		Gray fine to medium sand, dense, saturated, no odor	
-						Oray The to medium sand, dense, saturated, no odor	
-							
20'		X	29/31	SP		Gray fine to medium sand, dense, saturated, no odor	
125'		X	29/44	MI		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW5d SHEET 6 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SAI	MPLE	E	IPLE		Spoon Sampler
PTH (FT.)	LK	_	CS ASSIFICATION	ONTORING CKGROUND/ SAN	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DE	BU	5	BL	CC	MO	DESCRIPTION
					ppm	
		X	19/20	SP		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor
5'		X	15/22	SP		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor
-)'		X	17/21	SP		
-		A	17/21	51		Gray fine to medium sand with gravel to 3/8", dense, saturated, no odor
0 1						
,				SP		Heaving sands no sample
-						
,				SP		Heaving sands no sample

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

170

X

10643 So. Norwalk Boulevard

BORING MW5d SHEET 7 of 7

Santa Fe Springs, California

DATE 7/11/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 43' South and 147' West of SAMPLE METHOD Drive/

the SE building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	LE		SAMPLE	EQUITMENT	Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	ONITORING CKGROUND/	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt DESCRIPTION	- Concrete - Grout (neat cement) - No. 3 Sand
-					ppm	DESCRIPTION	
-							
- 155'		Х		SP		Heaving sands no sample	
-							
- 160 <u>'</u>		X		SP		Heaving sands no sample	

Heaving sands no sample X SP 1651

SP

Heaving sands no sample

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6d SHEET 1 of 7

Santa Fe Springs, California

DATE 7/24/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

7' North and 26' East of

SAMPLE METHOD Drive/

BC2.

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

EQUIPMENT: PID for H&S monitoring

	SA	MP	LE		IPLE															
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement - No. 3 Sand													
	E		E	20	B	DESCRIPTION Concrete														
10					ppm	Concrete														
- 5'—		Х	11/17	SM		Brown silty fine sand, medium dense, moist, no odor														
- - 0' <u></u> -		X	12/20	SM		Brown silty fine sand, medium dense, moist, no odor														
5! <u> </u>		x	16/22	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	-	Brown fine to coarse sand, dense, moist, no odor		
- - 0'		x	24/20	SM		Tan silty fine sand, dense, dry, no odor														
- -5'—		X	19/23	SC		Brown clayey sand, dense, dry, no odor														

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6d SHEET 2 of 7

Santa Fe Springs, California

DATE 7/24/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 26' East of

th and 26' East of SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

Spoon Sampler

					AN	
		ED		USCS	MONITORING BACKGROUND/ SAN	
DEPTH (FT.)		UNDISTURBED	FT	CAI	MONITORING BACKGROUNI	
LH (7	IST	BLOWS/ FT	SIE	TO	
EP	BULK	ON	CO	USCS	ON	
	2		_ m	20	N	

SAMPLE

Casing: 4" PVC flush thread w/ .02" slots
Vault: 12" traffic rated, water tight, bolt

- Concrete

- Grout (neat cement)

- No. 3 Sand

DEP	BUL	IND	BLC	USC	MON	DESCRIPTION	V///A
-					ppm		
4							
-		X	19/30	ML		Light brown sandy silt, dense, sl. moist, no odor	
-							
1		х	17/21	ML		Light brown sandy silt, dense, sl. moist, no odor	
-		X	25/26	SP			
-						Grey medium sand, dense, moist, no odor	
-		х	23/27	SP		Grey medium sand, dense, moist, hydrocarbon odor	
1 1 1							
		Y	29/34	QD.		Grey medium sand w/ gravel, dense, moist, hydrocarbon odor	11/1/1

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6d SHEET 3 of 7

Santa Fe Springs, California

DATE 7/24/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

SAMPLE METHOD Drive/

the NW building corner

7' North and 26' East of

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85

	SA	MP	LE		PLE		
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
_				20	ppm	DESCRIPTION	
-							
55'		X	37/36	SP		Tan fine to coarse sand, dense, sl. moist, no odor	
- 50'		X	23/40	SP		Grey fine to coarse sand, dense, sl. moist, no odor	
9							
55' <u> </u>		X	22/42	SP		Grey fine to coarse sand, dense, sl. moist, no odor	
70'		Х	36/41	ML		brown silt, stiff, dry, no odor	
-							
- 75'		X	21/33	SP		Gray medium to coarse sand, dense, moist, sl. oily odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6d SHEET 4 of 7

Santa Fe Springs, California

DATE 7/24/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

7' North and 26' East of SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	LE	- 1		Spoon Sampler
PTH (FT.)	LK	ADISTURBED	OWS/ FT	ASSIFICATION INTORING	Casing: 4" PVC flush thread w/ .02' Vault: 12" traffic rated, water tight	

DI	2	5	BL	50	MO	DESCRIPTION	
4					ppm		
_							
-							
						Grey fine to medium sand, dense, moist, hydrocarbon odor	
1		X	27/31	SP		orey me to median sane, dense, moist, nyaroda odor	
	Ш	X	17/24	SP			
		12	17724	51		Grey fine to medium sand, dense, moist, hydrocarbon odor	
				4 4			
		X	27/31	SP		Grey medium to coarse sand, dense, moist, no odor	
					1	Grey medium to coarse sand, dense, moist, no odor	
		X	19/20	SP		Grey fine tomedium sand, dense, saturated, no odor	
		Λ	19/20	SF			
		X	19/21	SP		Gray fine to medium sand, dense, saturated, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO.

10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6d SHEET 5 of 7

Santa Fe Springs, California

DATE 7/24/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

7' North and 26' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

-	SAM	PLE	APLE		Spoon Sampler
EPTH (FT.)	SULK	00	SCS LASSIFICATION IONITORING ACKGROUND/ SAN	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
	1 m	1 00	- T 1 - AA	TO TO COLD EDUCATION I	WILLIA WILL

D	B	n	B	50	M B	DESCRIPTION	
-					ppm		
-							
7							
105'		X		SP		no sample heavying sands	
-							
-							
-							
110'				SP			
1 2							
_							
115'				SP		no sample heavying sands	
-						1	
-							
120′_				SP			
-							
-							
125'				SP		no sample heavying sands	

SITE:

FERO ENGINEERING

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10643 So. Norwalk Boulevard

Santa Fe Springs, California

7' North and 26' East of BORING LOCATION/CONDITIONS:

the NW building corner

JOB NO. 10-758

BORING MW6d SHEET 6 of 7

DATE 7/24/12 BY J. Petersen

SAMPLE METHOD Drive/ Undisturbed

OBSERVERS/SAMPLERS: JBP

PID for H&S monitoring **EQUIPMENT:**

BC2 DRILLERS:

EQUIPMENT: CME 85 with Split

	SA	MP	LE		APLE		Spoon Sampler
PTH (FT.)	LK	DISTURBED	OWS/ FT	CS ASSIFICATION	NITORING CKGROUND/ SAN	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DE	BU	5	BL	CE	MO	DESCRIPTION	
					ppm		
-							
-	-						
130'_				SP		no sample heavying sands	
				1.50			
-	-						
35'				SP			
1							
				-/		Heaving sands no sample	
40'				SP			
11							
45'				SP			
1							
						Transfer and the same and	
						Heaving sands no sample	
150"				SP			

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6d SHEET 7 of 7

Santa Fe Springs, California

DATE 7/24/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 26' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	E		APLE		Spoon Sampler
EPTH (FT.)	ULK	UNDISTURBED	3LOWS/ FT	SCS LASSIFICATION	IONITORING ACKGROUND/ SAN	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
D	B	1	B	2	BZ	DESCRIPTION	

DEL	BUI	N	BLC	USC	M	DESCRIPTION		
-					ppm			
-								
-								
5'				SP		Heaving sands no sample		
-								
-							/////	//
-								
,				SP		Heaving sands no sample		
-								
-								
-								
,				SP		Heaving sands no sample		
-								
-								
-								
, -				SP				
_				01		Heaving sands no sample		
_						Probe Sch.		
é						Green = 5' Blue = 15'		
***						DINC 15		

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6mSHEET 1 of 6

Santa Fe Springs, California

DATE 7/20/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

7' North and 15' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2.

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85

177	SAI		LE	MPLE			
DEPTH (FT.)	BULK	UNDISTURBED BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand	
				-	2 1	Concrete	
-					ppm	Collected	
-							
-							
5!			X	11/17	SM	Brown silty fine sand, medium dense, moist, no odor	
,			^	1.1/1.7	SIVI		
-							
-						D 16 7 1 15 1 1 1 1	
0'		X	12/20	SM	}	Brown silty fine sand, medium dense, moist, no odor	
-							
- 2				1			
5'_		X	16/22	SP		Brown fine to coarse sand, dense, moist, no odor	
-			10,22				
-							
-							
-		1		200		Tan silty fine sand, dense, dry, no odor	
20'-		X	24/20	SM		and only sale varies, we have, at J, 110 value	
-				100			
-							
25'-		X	19/23	SC		Brown clayey sand, dense, dry, no odor	

SITE:

FERO ENGINEERING

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

EQUIPMENT:

10643 So. Norwalk Boulevard

Santa Fe Springs, California

BORING LOCATION/CONDITIONS: 7' North and 15' East of

the NW building corner

JOB NO. 10-758

BORING MW6mSHEET 2 of 6

DATE 7/20/12 BY J. Petersen

SAMPLE METHOD Drive/

Undisturbed

OBSERVERS/SAMPLERS: JBP DRILLERS: BC2

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	LE		PLE		Spoon Sampler
DEPTH (FT.)	ULK	UNDISTURBED	LOWS/ FT	SCS ASSIFICATION	ONITORING ACKGROUND/ SAM	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
D	B	n	BI	CL	M B	DESCRIPTION	
					ppm		

D	B	U	B	50	M B	DESCRIPTION	
					ppm		
30'		x	19/27	ML		Light brown sandy silt, dense, sl. moist, no odor	
35'		X	19/30	SP		Light brown sandy silt, dense, sl. moist, no odor	
40'		Х	14/21	SC		Grey medium sand, dense, moist, no odor	
45'	-	х	27/32	ML		Grey medium sand, dense, moist, hydrocarbon odor	
50'		X	24/26	SP		Grey medium sand w/ gravel, dense, moist, hydrocarbon odor	

SITE:

FERO ENGINEERING

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10643 So. Norwalk Boulevard

Santa Fe Springs, California

BORING LOCATION/CONDITIONS: 7' North and 15' East of

the NW building corner7'

JOB NO. 10-758

BORING MW6mSHEET 3 of 6

DATE 7/20/12 BY J. Petersen

SAMPLE METHOD Drive/

Undisturbed
DRILLERS: BC2

NOBSERVERS AMPLERS: JBP

NW building OUTPMENT: P

SAMPLE

PID for H&S monitoring

EQUIPMENT: CME 85

DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMP	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
D	B		ח	B	50	M B,	DESCRIPTION
-					ppm		
55'		Х	37/36	SP		Tan fine to coarse sand, dense, sl. moist, no odor	
- 60' <u></u>		х	23/40	SP	-	Grey fine to coarse sand, dense, sl. moist, no odor	
65'		x	22/42	SP		Grey fine to coarse sand, dense, sl. moist, no odor	
70'		х	36/41	ML		brown silt, stiff, dry, no odor	
75'		X	21/33	SP		Gray medium to coarse sand, dense, moist, sl. oily odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6mSHEET 4 of 6

Santa Fe Springs, California

DATE 7/20/12 By J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 15' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

SAMPLE =

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SAMI				
EPTH (FT.)	JLK NDISTURBED	LOWS/ FT	CS ASSIFICATION ONITORING CKGROUND/ SAM	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand

DEP	BUI	IND	BLO	USC	MO	DESCRIPTION	
1 - 1					ppm		
)'		X	27/31	SP		Grey fine to medium sand, dense, moist, hydrocarbon odor	
5'		X	17/24	SP		Grey fine to medium sand, dense, moist, hydrocarbon odor	
,		х	27/31	SP		Grey medium to coarse sand, dense, moist, no odor	
1 1 1		Х	19/20	SP		Grey fine tomedium sand, dense, saturated, no odor	
-00'_		X	19/21	SP		Gray fine to medium sand, dense, saturated, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

SAMPLE

10643 So. Norwalk Boulevard

BORING MW6m SHEET 5 of 6

Santa Fe Springs, California

DATE 7/20/12 By J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 15' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

Spoon Sampler

SULK JUDISTURBED JUDISTURBED JEOWS/ FT SCS LASSIFICATION JONITORING ACKGROUND/ SAN	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt
SAME	

- Concrete

- Grout (neat cement)

VIIIIA VIIIIA

- No. 3 Sand

O	B	0	B	50	M B	DESCRIPTION	
-					ppm		
- 4							
05'		х		SP		no sample heavying sands	
-		1 3					
-							
10'				SP			
×							
15'				SP		no sample heavying sands	
-						no sample nearying sales	
-							
20'_				SP			
-							
25'				SP		no sample heavying sands	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

Brown = 60' Red = 85'

BORING MW6mSHEET 6 of 6

Santa Fe Springs, California

DATE 7/20/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 15' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	SAMPLE		SAMPLE		SAMPLE		SAMPLE		SAMPLE		AMPLE			PLE		Spoon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand										
0	B	1	M	C	BZ	DESCRIPTION											
-					ppm												
-																	
-				an		no sample heavying sands											
30'				SP		•											
-		-															
_																	
35'				SP		no sample heavying sands											
-																	
40'				SP													
-				31		no sample heavying sands											
-																	
-						Probe Sch. Yellow = 30'											

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6s SHEET 1 of 5

Santa Fe Springs, California

DATE_7/19/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

7' North and 10' East of

SAMPLE METHOD Drive/

BC2.

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85

	SA	MP	LE		PLE		
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
		-		10	2 8	Concrete	
1.0					ppm	Concrete	
1							
5'—		X	11/17	SM		Brown silty fine sand, medium dense, moist, no odor	
-							
- 1					l		
0'-		X	12/20	SM		Brown silty fine sand, medium dense, moist, no odor	
-							
1							
1							
5'_		X	16/22	SP		Light Brown fine sand, dense, moist, no odor	
-							
						201002	
0'—		X	24/20	SM		Tan fine sand, dense, dry, no odor	
1							
1,2							
5'_		X	19/23	SC		Tan fine sand, dense, dry, no odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

10-758 JOB NO.

SITE:

10643 So. Norwalk Boulevard

BORING MW6s SHEET 2 of 5

Santa Fe Springs, California

DATE 7/19/12 BY J. Petersen

BORING LOCATION/CONDITIONS:

7' North and 10' East of SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS:

BC2

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	PLE		PLE	Spoon Samp	oler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	oncrete out (neat cement) o. 3 Sand
_				20	ppm	DESCRIPTION	
-					Plan		
30'		X	19/30	ML		Light brown sandy silt, dense, sl. moist, no odor	
35'		X	17/21	ML		Light brown sandy silt, dense, sl. moist, no odor	
- 40'		х	25/26	SP		Grey medium sand, dense, moist, no odor	
- - 45 <u>'</u>		X	23/27	SP		Grey medium sand, dense, moist, hydrocarbon odor	
- - 50 <u>'</u>		X	29/34	SP		Grey medium sand w/ gravel, dense, moist, hydrocarbon odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

SAMPLE

10643 So. Norwalk Boulevard

BORING MW6s SHEET 3 of 5

Santa Fe Springs, California

DATE 7/19/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 10' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

CHARLET

EQUIPMENT:

PID for H&S monitoring

EQUIPMENT: CME 85

DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPI	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
IQ	BI	5	BI	CI	MC	DESCRIPTION	
-					ppm		
-							
55'		X	37/36	SP		Tan fine to coarse sand, dense, sl. moist, no odor	
-							
1							
- 60'		X	23/40	SP		Grey fine to coarse sand, dense, sl. moist, no odor	
-							
				- 4			
65'		X	22/42	SP		Grey fine to coarse sand, dense, sl. moist, no odor	
-							
70' <u> </u>		X	36/41	ML		brown silt, stiff, dry, no odor	
-							
3							
75'		X	21/33	SP		Gray medium to coarse sand, dense, moist, sl. oily odor	

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6s SHEET 4 of 5

Santa Fe Springs, California

DATE 7/19/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 10' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

RS: DCZ

EQUIPMENT:

19/21 SP

PID for H&S monitoring

EQUIPMENT: CME 85 with Split

Spoon Sampler

	SA	MP	PLE E		IPLE	S	poon Sampler
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS CLASSIFICATION	MONITORING BACKGROUND/ SAMPLE	Casing: 4" PVC flush thread w/.02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cement) - No. 3 Sand
					ppm	DESCRIPTION	
- - 80'—		X	27/31	SP	ррш	Grey fine to medium sand, dense, moist, hydrocarbon odor	
-							
- 35'— - -		Х	17/24	SP		Grey fine to medium sand, dense, moist, hydrocarbon odor	
- 		X	27/31	SP		Grey medium to coarse sand, dense, moist, no odor	
- 95'—		х	19/20	SP		Grey fine tomedium sand, dense, saturated, no odor	

Gray fine to medium sand, dense, saturated, no odor

ENVIRONMENTAL ENGINEERING & CONSULTING

BORING LOG

PROJECT: Continental Heat Treating

JOB NO. 10-758

SITE:

10643 So. Norwalk Boulevard

BORING MW6s SHEET 5 of 5

Santa Fe Springs, California

DATE 7/19/12 BY J. Petersen

BORING LOCATION/CONDITIONS: 7' North and 10' East of

SAMPLE METHOD Drive/

the NW building corner

Undisturbed

OBSERVERS/SAMPLERS: JBP

DRILLERS: BC2

EQUIPMENT: PID for H&S monitoring

EQUIPMENT: CME 85 with Split

	SA	MPI	APLE		SAMPLE		Spoon Sampler	
DEPTH (FT.)	BULK	UNDISTURBED	BLOWS/ FT	USCS	MONITORING BACKGROUND/ SAN	Casing: 4" PVC flush thread w/ .02" slots Vault: 12" traffic rated, water tight, bolt	- Concrete - Grout (neat cer	nent)
<u> </u>	<u>m</u>	n	B	55	M B/B	DESCRIPTION		
-					ppm			
-								
05'		X		SP		no sample heavying sands		
-								
4								
10'				SP		no sample heavying sands		
11 0' -				SP		no sample heavying sands		Ę

Attachment B

Laboratory Report Hydro-Geo Spectrum August 2, 2012

John Petersen Rick Fero 431 West Lambert Road Unit 305 Brea, CA 92621

Dear John,

Enclosed please find the report on the vapor sampling and analysis performed at Continental Heating in Santa Fe Springs, Ca on July 30, 2012.

The report consists of one bound and one unbound copy with the following sections:

- Technical approach with results and discussion.
- Spreadsheet of results
- Data quantitation sheets in LARWQCB format.
- QA/QC in LARWQCB format.
- Chromatograms (unbound copy only).

If you have any questions or additional requirements, please do not hesitate to call. It was a pleasure working with you, and I look forward to future projects.

Sincerely,

Raphe Paylick

Director

LOCATION-	Date Sampled	1.1-DCE	1,2-DCE	TCE	PCE	НС	VOC
depth (ft)		μg/L	μg/L	μg/L	μg/L	μg/ L	μg/L
FNP19-5	30-Jul-12	7.8	6.4	11	100	N.	Ν
FNP19-15	30-Jul-12	1.7	5.7	29	465	1523	N
FNP19-30	30-Jul-12	3.2	11	8.2	491	1568	N
FNP19-60	30-Jul-12 30-Jul-12	18	123	32	121	5749	N
FNP19-85	30-Jul-12 30-Jul-12	46	6.2	32 7	92	8580	N
FNP19-65				7.4		9833	N
ł	30-Jul-12	18	2.9		6.1		
FNP20-15	30-Jul-12	N	N	0.8	22	223	N
FNP20-30	30-Jul-12	1	N	2.4	6.3	630	N
FNP20-60	30-Jul-12	21	12	29	7.7	8146	N
FNP20-85	30-Jul-12	49	30	4.4	7.4	13724	N
FNP21-5	30-Jul-12	2.3	N	8.2	74	2169	N
FNP21-15	30-Jul-12	4.1	7.4	7.5	170	2747	N
FNP21-30	30-Jul-12	2.2	1.4	10	152	2365	Ν
FNP21-60	30-Jul-12	15	9.6	43	88	8398	Ν
FNP21-85	30-Jul-12	27	39	12	75	9256	Ν
FNP22-5	30-Jul - 12	3.8	14	10	162	1948	Ν
FNP22-15	30-Jul-12	4.5	11	25	858	N	Ν
FNP22-30	30-Jul-12	3	5.9	19	620	N	Ν
FNP22-60	30-Jul-12	0.8	0.9	Ν	5.9	277	Ν
FNP22-85	30-Jul-12	46	51	8.4	166	10829	Ν
MW6-5	30-Jul-12	Ν	45	234	7309	N	Ν
MW6-15	30-Jul-12	Ν	80	255	7172	Ν	Ν
MW6-30	30-Jul-12	4.6	130	134	2838	2053	Ν
MW6-60	30-Jul-12	12	236	95	962	3282	Ν
MW6-85	30-Jul-12	18	535	64	342	5756	Ν
VP5-5	30-Jul-12	N	Ν	N	N	Ν	Ν
VP5-15	30-Jul-12	Ν	Ν	Ν	Ν	Ν	Ν

PCE = Tetrachloroethylene

TCE = Trichloroethylene

DCE = Dichloroethylene

HC = Hydrocarbons

DATA

SITE NAME: SFS/FERO

LAB NAME: HydroGeoSpectrum (HGS)

DATE: 30 JUL 2012

ANALYST: Raphe Pavlick

COLLECTOR: Raphe Pavlick

INSTRUMENT ID 2415A8201

NORMAL INJECTION V	OLUME	1 m	1										
Sample ID:			FNP19			FNP19		FNP19			FNP19		
		WC	DB9133-129	519	WC	DB9134-12	520	WOB9140-12521			WC	DB9136-12	522
Sampling Depth (ft)			5			15			30			60	
Purge Volume (ml)			1650			2250			3000			4500	
Vacuum			NO			NO			NO			NO	
Sampling Time			0941			0945 A			0950			1000 A	
Injection Time			1104			1125			1220			1236	
Injection Volume			1ml			1ml			1ml			1ml	
Dilution Factor			1			1			1			1	
COMPOUND	DETECTOR	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1,1-Dichloroethene	MS	5.31	12112	7.7	6.64	2660	1.7	6.61	4899	3.1	6.34	27480	17.6
Trichloroethene	MS	8.58	16321	10.8	8.61	42977	28.6	8.61	12291	8.1	8.59	47989	31.9
Tetrachloroethene	MS	9.75	115180	99.9	9.76	535359	464.6	9.75	566160	491.3	9.76	139942	121.4
Deutero-chloroform	MS	7.77	38589	107%	7.86	43371	120%	7.85	35939	99%	7.80	34683	96%
D6-BENZENE	MS	8.21	157940	112%	8.24	144923	103%	8.24	145477	103%	8.22	138072	98%
D6-ACETONE	MS	6.77	50504	114%	6.81	53759	121%	6.80	49843	112%	6.79	48512	109%
D2-Dichloromethane	MS	7.05	42096	94%	6.88	48128	108%	6.84	44712	100%	6.89	50018	112%
D8-TOLUENE	MS				9.36	98063	92%	9.35	117677	111%	9.36	87284	82%
Total Number of Peaks by G0	CMS:	3	+ Surroga	ates	3	+ Surroga	ates	3	+ Surroga	ates	3	+ Surroga	ates

SITE NAME: SFS/FERO LAB NAME: HydroGeoSpectrum (HGS) DATE: 30 JUL 2012

ANALYST: Raphe Pavlick COLLECTOR: Raphe Pavlick INSTRUMENT ID 2415A8201

NORMAL INJECTION VOLUME 1 m

NORMAL INJECTION VOLUME	1 ml			
Sample ID:	FNP19	V P5	VP5	FNP20
	WOB9137-12523	3 WOB9138A-12522	WOB9139-12523	WOB9140-12524
Sampling Depth (ft)	85	5	15	30
Purge Volume (ml)	5850	300	300	3000
Vacuum	NO	YES	YES	NO
Sampling Time	1008	0953	0957	1010
Injection Time	1257	1314	120	1333
Injection Volume	1ml	1ml	1ml	1ml
Dilution Factor	1	1	1	1
COMPOUND DETECTOR	RT AREA C	CONC RT AREA COI	NC RT AREA CONC	RT AREA CONC
1,1-Dichloroethene MS	6.55 71081	45.7 NONE DETECTED	NONE DETECTED	
Trichloroethene MS	8.61 10452	6.9		8.60 4466 2.9
Tetrachloroethene MS	9.77 106203	92.1		9.76 7995 6.9
Deutero-chloroform MS	7.85 42834	118% 7.83 33526 93	% 7.84 35053 97%	7.85 34034 94%
D6-BENZENE MS	8.13 141922	101% 8.23 130397 92	% 8.24 134381 95%	8.04 125886 89%
D6-ACETONE MS	6.81 49317	111% 6.80 46338 10	4% 6.80 49521 111%	6.80 44175 99%
D2-Dichloromethane MS	6.94 53902	121% 6.68 41959 94	% 6.78 44495 100%	6.80 42984 96%
D8-TOLUENE MS	9.36 108297	102% 9.35 94957 90	% 9.36 102506 97%	9.35 98166 93%
Total Number of Peaks by GCMS.	3 + Surrogates	es 0 + Surrogates	0 + Surrogates	2 + Surrogates

SITE NAME: SFS/FERO ANALYST: Raphe Pavlick

LAB NAME: HydroGeoSpectrum (HGS)

DATE: 30 JUL 2012

COLLECTOR: Raphe Pavlick

INSTRUMENT ID 2415A8201

MANUELOL. Hapholic	2111011			00111		, aprile i	armon					(OLO)	
NORMAL INJECTION	N VOLUME	1 m	l										
Sample ID:			FNP21			FNP21			FNP21			FNP21	
		WC)B9141-12	525	WC	B9142-12	526	WC	B9143-12	527	WC)B9144-12	528
Sampling Depth (ft)			5			15			30			60	
Purge Volume (ml)			1650			2250			3000			4500	
Vacuum			NO			NO			NO			NO	
Sampling Time			1441			1445 A			1450			1500	
Injection Time			1612			1631			1649			1705	
Injection Volume			1ml			1ml			1ml			1ml	
Dilution Factor			1			1			1			1	
				50110			00110			00110			00110
COMPOUND	DETECTOR	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1,1-Dichloroethene	MS	6.63	3642	2.3	6.59	6436	4.1	6.58	3479	2.2	6.11	23351	15.0
Trichloroethene	MS	8.60	12333	8.2	8.61	11222	7.4	8.60	15710	10.4	8.58	63939	42.6
Tetrachloroethene	MS	9.75	85397	74.1	9.77	195716	169.8	9.76	175655	152.4	9.75	101631	88.2
		7.05	00000	1.000/	7.05	07.400	10.40/	7.04	07700	10.10/	0.00	10501	4.4.00/
Deutero-chloroform	MS	7.85	39038	108%	7.85	37483	104%	7.84	37738	104%	8.09	42561	118%
D6-BENZENE	MS	8.23	157040	111%	8.24	134774	96%	8.23	129078	92%	8.09	132654	94%
D6-ACETONE	MS	6.81	55519	125%	6.80	57901	130%	6.80	50783	114%	6.77	50346	113%
D2-Dichloromethane	MS	6.86	49427	111%	6.82	45352	102%	6.78	47491	106%	6.88	44845	100%
D8-TOLUENE	MS	9.35	98914	93%	9.36	106809	101%	9.36	109017	103%	9.42	88265	83%

Total Number of Peaks by GCMS:

3 + Surrogates

3 + Surrogates

3 + Surrogates

3 + Surrogates

SITE NAME: SFS/FERO

LAB NAME: HydroGeoSpectrum (HGS)

DATE: 30 JUL 2012

ANALYST: Raphe Pavlick

COLLECTOR: Raphe Pavlick

INSTRUMENT ID 2415A8201

NORM	1AL IN	JECTION	VOLUME	1 ml

NORMAL MULCION	VOLUML	1 111	ı										
Sample ID:			FNP21			FNP22			FNP22			FNP22	
		WC	DB9145-12	529	VC	F2908-104	80	VC	F2909-104	81	VO	F2910-104	82
Sampling Depth (ft)			85			5			15			30	
Purge Volume (ml)			5850			1650			2250			3000	
Vacuum			NO			NO			NO			NO	
Sampling Time			1508			0926			0930			0934	
Injection Time			1724			1053			1113			1133	
Injection Volume			1ml			1ml			1 ml			1ml	
Dilution Factor			1			1			1			1	
COMPOUND	DETECTOR	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1.1-Dichloroethene	MS	6.48	42095	27.0	2.83	15883	3.8	2.88	18596	4.5	2.91	12511	3.0
1,2-Dichloroethene (total)	MS	0.40	42093	21.0	3.64	68116	14.1	3.68	5 136 2	10.6	3.69	28189	5.8
Trichloroethene	MS	8.59	18542	12.3	5.95	85847	9,9	5.98	216073	25.0	5.96	167148	19.3
Tetrachloroethene	MS	9.75	86865	75.3	8.27	1296550	162.4	8.28	6850030	858.4	8.27	4944654	619.7
retractiondethene	IVIO	3.13	00000	75.5	0.21	1230330	102.4	0.20	0000000	030.4	0.21	1311031	013.7
Deutero-chloroform	MS	8.11	35431	98%	3. 8 5	165007	ERR	3.89	173611	110%	3.89	160661	102%
D6-BENZENE	MS	8.11	138553	98%	6.11	329994	ERR	6.13	289661	99%	6.13	321473	110%
D6-ACETONE	MS	6.77	49403	111%	1.95	176832	ERR	2.02	155702	104%	2.03	183120	122%
D2-Dichloromethane	MS	6.91	51305	115%	1.82	120016	ERR	1.92	117467	121%	1.93	120951	125%
D8-TOLUENE	MS	9.43	115427	109%	8.71	201838	ERR	8.70	202178	102%	8.70	201786	102%
Total Number of Peaks by 0	2CMS:	3	+ Surroga	atoc	4	+ Surroga	atos	4	+ Surroga	atos	4	+ Surroga	atos
Total Number of Feaks by C	ACIVIO.	J	1 Guillogi	2163	7	i Guiroge	ales	7	Guiroge	ales	7	i Guiroga	ales

SITE NAME: SFS/FERO

HydroGeoSpectrum (HGS) LAB NAME:

DATE: 30 JUL 2012

ANALYST: Raphe Pavlick

COLLECTOR: Raphe Pavlick

INSTRUMENT ID 2415A8201

NORMAL INJECTION VOLUME	1 ml										
Sample ID:	F	NP22		FNP22			FNP20			FNP20	
	VOF29	11-10483	VC	F2912-104	84	VO	F2913-104	85	VO	F2914-104	86
Sampling Depth (ft)	6	60		85			5			15	
Purge Volume (ml)	4	1500		5850			1650			2250	
Vacuum	١	10		NO			NO			NO	
Sampling Time	C	944		0952 A			1001			1005	
Injection Time	1	152		128			1228			1248	
Injection Volume	1	lml		1ml			1ml			1ml	
Dilution Factor	1			1			1			1	
COMPOUND DETECTOR	RT AF	REA CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1,1-Dichloroethene MS	2.92	3291 0.8	2.73	190031	45.9	2.90	73969	17.9			
1,2-Dichloroethene (total) MS	3.75 4	1254 0.8	3.54	245559	51.0	3.69	13947	2.9			
Trichloroethene MS			5.94	72390	8.3	6.00	64007	7.4	5.99	6969	0.8
Tetrachloroethene MS	8.30 4	6982 5.8	8.31	1327965	166.4	8.31	48529	6.0	8.33	172461	21.6
Deutero-chloroform MS	3.90 17	73421 110%	3.76	150179	96%	3.90	129938	83%	3.80	141407	90%
D6-BENZENE MS	6.16 34	15024 118%	6.20	355380	121%	6.23	328935	112%	6.15	308727	105%
D6-ACETONE MS	2.04 16	61167 108%	1.79	154938	104%	2.03	162350	109%	1.84	146974	98%
D2-Dichloromethane MS	1.93 11	6888 121%	1.67	118924	123%	1.92	109098	113%	1.71	117381	121%
D8-TOLUENE MS	8.75 22	23099 113%	8.75	214579	108%	8.75	205266	104%	8.79	242920	123%
Total Number of Peaks by GCMS:	3 + 5	Surrogates	4	+ Surroga	ates	4	+ Surroga	ates	2	+ Surroga	ates

SITE NAME: SFS/FERO LAB NAME: HydroGeoSpectrum (HGS) DATE: 30 JUL 2012

ANALYST: Raphe Pavlick COLLECTOR: Raphe Pavlick INSTRUMENT ID 2415A8201

NORMAL INJECTION VOLUME 1 ml

Sample ID:			FNP20			FNP20			FNP20				
		VO	F2915-104	87	VO	F2916-104	88	VO	F2917-104	89			
Sampling Depth (ft)			30			60			85				
Purge Volume (ml)			3000			4500			5850				
Vacuum			NO			NO			NO				
Sampling Time			1010			1020 A			1028 H				
Injection Time			1305			1324			1343				
Injection Volume			1ml			1ml			1ml				
Dilution Factor			1			1			1				
COMPOUND	DETECTOR	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1,1-Dichloroethene	MS	2.90	4348	1.0	2.67	87021	21.0	2.91	201423	48.7			
1,2-Dichloroethene (total)	MS				3.51	58219	12.1	3.69	143243	29.8			
Trichloroethene	MS	6.02	20722	2.4	5.96	254074	29.4	6.00	38196	4.4			
Tetrachloroethene	MS	8.34	50035	6.2	8.32	61417	7.7	8.32	59365	7.4			
Deutero-chloroform	MS	3.90	151912	97%	3.73	139475	89%	3.90	153986	98%			
D6-BENZENE	MS	6.17	308304	105%	6.13	343179	117%	6.26	365565	125%			
D6-ACETONE	MS	2.01	170755	114%	1.72	146611	98%	2.02	157811	106%			
D2-Dichloromethane	MS	1.88	112549	116%	1.61	114589	118%	1.91	115742	120%			
D8-TOLUENE	MS	8.78	194246	98%	8.77	227897	115%	8.77	211109	107%			

Total Number of Peaks by GCMS: 3 + Surrogates 4 + Surrogates 4 + Surrogates

SITE NAME: SFS/FERO

HydroGeoSpectrum (HGS) LAB NAME:

DATE: 30 JUL 2012

ANALYST: Raphe Pavlick

COLLECTOR: Raphe Pavlick

INSTRUMENT ID 2415A8201

NORMAL INJECTION VOLUME 1 ml

THO HIM IL HAD COTTON	VOLOIVIL		,,										
Sample ID:			MW6			MW6			MW6			MW6	
		VC)F2918-1049	90	VC	F2918D-10	490	VC	F2919-1049	91	VC	F2919D-10	491
Sampling Depth (ft)			5			5 DF10			15			15 DF1	
Purge Volume (ml)			1650			1650			2250			2250	
Vacuum			NO			NO			NO			NO	
Sampling Time			1451			1451			1455			1455	
Injection Time			1600			1617			1633			1652	
Injection Volume			1ml			0.1ml			1ml			0.1ml	
Dilution Factor			1			10			1			10	
COMPOUND	DETECTOR	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1,2-Dichloroethene (total)	MS	3.70	216556	45.0	3.75	21873	45.5	3.64	385446	80.1	3.48	43907	91.3
Trichloroethene	MS	6.01	2017544	233.8	6.04	208577	241.7	6.00	2199513	254.8	5.95	256863	297.6
Tetrachloroethene	MS	8.32	26617380	3335.8	8.34	5831919	7308.9	8.31	25823087	3236.3	8.31	5722660	7172.0
Deutero-chloroform	MS	3.90	193103	123%	3.94	19127	122%	3.86	148356	94%	3.69	16485	105%
D6-BENZENE	MS	6.17	310107	106%	6.18	26424	90%	6.15	276558	94%	6.11	34094	116%
D6-ACETONE	MS	2.04	160116	107%	2.09	16893	113%	1.95	138504	93%	1.67	16085	108%
D2-Dichloromethane	MS	1.93	104820	108%	1.96	12051	124%	1.83	117500	121%	1.54	10724	111%
D8-TOLUENE	MS	8.77	201995	102%	8.81	21504	109%	8.77	190919	97%	8.76	23920	121%

Total Number of Peaks by GCMS:

3 + Surrogates

3 + Surrogates

3 + Surrogates

3 + Surrogates

SITE NAME: SFS/FERO

LAB NAME:

HydroGeoSpectrum (HGS)

DATE: 30 JUL 2012

ANALYST: Raphe Pavlick

COLLECTOR: Raphe Pavlick

INSTRUMENT ID 2415A8201

NORMAL INJECTION VOLUME 1

m	1

Sample ID:			MW6			MW6			MW6				
		VC	DF2920-1049	92	VC)F2920D-10	1492	VC	F2922-104	94			
Sampling Depth (ft)			30			30 DF10	O		85				
Purge Volume (ml)			3000			3000			5850				
Vacuum			NO			NO			NO				
Sampling Time			1500			1500			1518				
Injection Time			1705			1725			1803				
Injection Volume			1ml			0.1ml			1ml				
Dilution Factor			1			10			1				
COMPOUND	DETECTOR	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC	RT	AREA	CONC
1,1-Dichloroethene	MS	2.84	18860	4.5				2.87	73736	17.8			
1,2-Dichloroethene (total)	MS	3.64	626941	130.4	3.65	67790	141.0	3.66	2569731	534.5			
Trichloroethene	MS	5.98	1156144	133.9	5.99	120503	139.6	6.00	553288	64.1			
Tetrachloroethene	MS	8.28	16538965	2072.7	8.28	2264406	2837.9	8.33	2729857	342.1			
Deutero-chloroform	MS	3.85	124033	79%	3.86	16014	102%	3.88	139706	89%			
D6-BENZENE	MS	6.14	311641	106%	6.15	30463	104%	6.17	286455	98%			
D6-ACETONE	MS	1.96	133084	89%	1.98	18378	123%	1.97	166345	111%			
D2-Dichloromethane	MS	1.84	90840	94%	1.86	11595	120%	1.87	114575	118%			
D8-TOLUENE	MS	8.74	190681	96%	8.74	18661	94%	8.77	232418	117%			

Total Number of Peaks by GCMS:

4 + Surrogates

3 + Surrogates

4 + Surrogates

QA/QC

INITIAL CALIBRATION BY FULL SCAN MASS SPEC

LAB NAME: HydroGeoSpectrum DATE: 01 July 2012

Talle aut Elle BEINGE The TM PIRK FID FI HITHERRARALE DO HYMBORIOLE TM BORMILL DE MIRLE TALL

ANALYST:Raphe Pavlick STD LOT#:ULTRA CG1988 INSTRUMENT ID:2415A8201

1) Vinyl Chloride		Compound	1500	500	20	5	100	Avg		%RSD	AccRge
Chloroethane	1)	Vinyl Chloride	3.706	3.519	4.943	5.436	5.104	4.542	E2	19.14	30
Chloroethane	2)	_								5.91	30
1,1-Dichloroethene	3)	Ch1oroethane	2.216	2.225	3.819	2.592	2.655	2.701	E3		30
Methylene Chloride	4)	1,1-Dichloroethene	3.153	3.528	4.691	4.490	4.800	4.132	E3		
1,2-Dichloroethene	5)	Acetone	4.304	4.170	5.265	5.426	5.489	4.931	E3	12.99	20
8	6)	Methylene Chloride	1.310	1.309	1.954	1.804	1.853	1.646	E3	18.94	20
Chloroform	7)	1,2-Dichloroethene (t	0.759	0.860	1.164	0.998	1.027	0.961	E4	16.26	20
10	8)	1,1-Dichloroethane	0.802	0.818	0.968	0.906	1.058	0.910	E4	11.71	20
11	9)	Chloroform	1.121	1.222	1.056	1.217	1.259	1.175	E4	7.14	20
11 2-Butanone	10)	1,2-Dichloroethane	5.112	5.783	5.595	4.523	5.745	5.352	E 3	9.99	20
Carbon Tetrachloride	11)		4.814	5.080	6.035	7.144	5.326	5.680	E3	16.48	20
Carbon Tetrachloride	12)	1,1,1-Trichloroethane	1.552	1.679	1.810	1.656	1.619	1.663	E4	5.71	20
14 Benzene	13)									19.65	20
Trichloroethene		Benzene	1.685	1.594	2.351	1.614	1.628	1.774	E4	18.26	20
17 Bromodichloromethane 0.920 0.972 1.307 1.344 1.273 1.163 E4 17.25 20 20 21.31		Trichloroethene	7.402	8.347	8.683	9.380	9.334	8.629	E 3	9.43	20
17 Bromodichloromethane 0.920 0.972 1.307 1.344 1.273 1.163 E4 17.25 20 20 21.31	16)	1,2-Dichloropropane	5.139	5.225	7.367	6.900	7.236	6.373	E3	17.28	20
18	17)		0.920	0.972	1.307	1.344	1.273	1.163	E4	17.25	20
19 trans-1,3-Dichloropro 4.476 5.442 6.704 6.148 6.460 5.846 E3 15.41 20		cis-1,3-Dichloroprope	7.373	7.490	8.543	8.636	8.790	8.166	E3	8.30	20
20) 1,1,2-Trichloroethane 3.412 3.611 4.982 5.130 4.771 4.381 E3 18.43 20 21) Dibromochloromethane 0.901 0.986 1.057 1.349 1.331 1.125 E4 18.15 20 22) Bromoform 0.970 1.020 1.226 1.361 1.379 1.191 E4 15.88 20 23) 4-Methyl-2-Pentanone 1.051 1.054 1.525 0.972 1.106 1.142 E4 19.23 20 24) Toluene										15.41	20
22) Bromoform 0.970 1.020 1.226 1.361 1.379 1.191 E4 15.88 20 23) 4-Methyl-2-Pentanone 1.051 1.054 1.525 0.972 1.106 1.142 E4 19.23 20 20 24) Toluene 0.803 0.920 1.157 1.127 1.094 1.020 E4 14.90 20 25) Tetrachloroethene 7.478 7.756 7.779 8.798 8.084 7.979 E3 6.34 20 2-Hexanone 4.666 5.375 7.252 5.928 7.287 6.102 E3 18.95 20 2-Hexanone 1.434 1.491 1.782 1.526 1.590 1.556 E4 8.56 20 2-Hexanone 5.258 4.987 7.808 6.840 6.919 6.362 E3 18.82 20 29 Xylene (total) 2.021 2.134 2.927 2.520 2.668 2.454 E4 15.30 20 30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 31) 1,1,1,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 1,1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36 36) FREON-11 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 439 Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30		_									20
23)	21)	Dibromochloromethane	0.901	0.986	1.057	1.349	1.331	1.125	E4	18.15	20
24) Toluene 0.803 0.920 1.157 1.127 1.094 1.020 E4 14.90 20 25) Tetrachloroethene 7.478 7.756 7.779 8.798 8.084 7.979 E3 6.34 20 26) 2-Hexanone 4.666 5.375 7.252 5.928 7.287 6.102 E3 18.95 20 27) Chlorobenzene 1.434 1.491 1.782 1.526 1.590 1.565 E4 8.56 20 28) Ethylbenzene 5.258 4.987 7.808 6.840 6.919 6.362 E3 18.82 20 29) Xylene (total) 2.021 2.134 2.927 2.520 2.668 2.454 E4 15.30 20 30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 31) 1,1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) F	22)	Bromoform	0.970	1.020	1.226	1.361	1.379	1.191	E4	15.88	20
25) Tetrachloroethene 7.478 7.756 7.779 8.798 8.084 7.979 E3 6.34 20 2-Hexanone 4.666 5.375 7.252 5.928 7.287 6.102 E3 18.95 20 27) Chlorobenzene 1.434 1.491 1.782 1.526 1.590 1.565 E4 8.56 20 28) Ethylbenzene 5.258 4.987 7.808 6.840 6.919 6.362 E3 18.82 20 29) Xylene (total) 2.021 2.134 2.927 2.520 2.668 2.454 E4 15.30 20 30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 1.1,1,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 1.1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 1.1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 1.1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 1.33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 1.571 E3 0.83 2	23)	4-Methyl-2-Pentanone	1.051	1.054	1.525	0.972	1.106	1.142	E4	19.23	20
2-Hexanone	24)	Toluene	0.803	0.920	1.157	1.127	1.094	1.020	E4	14.90	20
27) Chlorobenzene 1.434 1.491 1.782 1.526 1.590 1.565 E4 8.56 20 28) Ethylbenzene 5.258 4.987 7.808 6.840 6.919 6.362 E3 18.82 20 29) Xylene (total) 2.021 2.134 2.927 2.520 2.668 2.454 E4 15.30 20 30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 1.1,1,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 1.1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) s D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	25)	Tetrachloroethene	7.478	7.756	7.779	8.798	8.084	7.979	E3	6.34	20
28) Ethylbenzene 5.258 4.987 7.808 6.840 6.919 6.362 E3 18.82 20 29) Xylene (total) 2.021 2.134 2.927 2.520 2.668 2.454 E4 15.30 20 30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 1.1,1,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 1.1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	26)	2-Hexanone	4.666	5.375	7.252	5.928	7.287	6.102	E3	18.95	20
29) Xylene (total) 2.021 2.134 2.927 2.520 2.668 2.454 E4 15.30 20 30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 31) 1,1,2,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 32) 1,1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-B	27)	Chlorobenzene	1.434	1.491	1.782	1.526	1.590	1.565	E4	8.56	20
30) Styrene 0.901 0.918 1.346 1.151 1.274 1.118 E4 18.15 20 1,1,1,1,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 1,1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	28)	Ethylbenzene	5.258	4.987	7.808	6.840	6.919	6.362	E3	18.82	20
31) 1,1,1,2-Tetrachloroet 8.013 8.265 9.872 9.396 9.748 9.059 E3 9.52 20 32) 1,1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.	29)	Xylene (total)	2.021	2.134	2.927	2.520	2.668	2.454	E4	15.30	20
32) 1,1,2,2-Tetrachloroet 1.014 1.013 1.460 1.560 1.325 1.274 E4 19.79 20 33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318	30)	Styrene	0.901	0.918	1.346	1.151	1.274	1.118	E4	18.15	20
33) FREON-11 0.942 1.023 1.226 1.137 1.198 1.105 E4 10.83 30 34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	31)	1,1,1,2-Tetrachloroet	8.013	8.265	9.872	9.396	9.748	9.059	E3	9.52	20
34) S Deutero-chloroform 1.558 1.584 1.573 1.571 E3 0.83 25 35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) S D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	32)	1,1,2,2-Tetrachloroet	1.014	1.013	1.460	1.560	1.325	1.274	E4	19.79	20
35) FREON-12 1.025 1.036 1.373 0.930 1.128 1.099 E4 15.38 30 36) FREON-113 0.860 0.907 1.349 1.016 0.947 1.016 E4 19.16 30 39) s D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	33)	FREON-11	0.942	1.023	1.226	1.137	1.198	1.105	E4	10.83	30
36) FREON-113	34) S	Deutero-chloroform	1.558	1.584	1.573			1.571	E3	0.83	25
39) s D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	35)	FREON-12	1.025	1.036	1.373	0.930	1.128	1.099	E4	15.38	30
39) s D6-BENZENE 2.845 2.842 3.113 2.933 E3 5.32 25 41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30	36)	FREON-113	0.860	0.907	1.349	1.016	0.947	1.016	E4	19.16	30
41) S D6-ACETONE 1.486 1.476 1.524 1.495 E3 1.70 25 42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30		D6-BENZENE	2.845	2.842	3.113			2.933	E3	5.32	25
42) S D2-Dichloromethane 9.637 9.435 9.974 9.682 E2 2.82 25 43) Freon-22 1.476 2.811 2.602 3.318 2.891 2.620 E2 26.36 30 44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30			1.486	1.476	1.524			1.495	E3	1.70	25
44) Freon-141B 0.775 0.882 1.032 0.955 1.081 0.945 E4 12.85 30			9.637	9.435	9.974			9.682	E2	2.82	25
, and the second of the second	43)	Freon-22	1.476	2.811	2.602	3.318	2.891	2.620	E2	26.36	30
53) S D8-TOLUENE 1.999 1.917 2.019 1.978 E3 2.73 25	44)	Freon-141B				0.955	1.081				
	53) S	D8-TOLUENE	1.999	1.917	2.019			1.978	E3	2.73	25

Evaluate Initial LCS Report

Vial: 1

Data File : 0:\HPCHEM\1\DATA\VOF2873.D Ang On : 30 Jun 2012 12:45 pm Sample : LCS 50ng Might : 01JULY12 Operator: Raphe HGS Inst : GC/MS Ins Multiplr: 1.00

MC integration Farams: rieint.p

Method : C:\HFCHEW\l\METHOES\00001111.M (RTE Integrator)
Tible : FULL SCAN
Last Update : Sun Jul 08 13:10:14 2012
Rospoder via : Multiple Level Calibration

Min. PRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. PRF Dev : 15 Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev AccRge
			~	
1	Vinyl Chloride	454.157	424.920	6.4 20
2	Bromomethane	164.647	175.960	-6.9 20
3	Chloroethane	2.701	2.201	E3 18.5 20
4	1,1-Dichloroethene	4.132	4.169	E3 -0.9 15
6	Methylene Chloride	1.646	1.431	E3 13.1 15
7	1,2-Dichloroethene (total)	9.615	9.214	E3 4.2 15
8	1,1-Dichloroethane	9.104	10.191	E3 -11.9 15
9	Chloroform	11.748	11.963	E3 -1.8 15
10	1,2-Dichloroethane	5.352	4.559	E3 14.8 15
12	1,1,1-Trichloroethane	16.632	15.057	E3 9.5 15
13	Carbon Tetrachloride	10.696	10.039	E3 6.1 15
14	Benzene	17.745	15.398	E3 13.2 15
15	Trichloroethene	8.629	7.839	E3 9.2 15
16	1,2-Dichloropropane	6.373	6.111	E3 4.1 15
17	Bromodichloromethane	11.632	12.855	E3 -10.5 15
18	cis-1,3-Dichloropropene	8.166	9.344	E3 -14.4 15
19	trans-1,3-Dichloropropene	5.846	5.798	E3 0.8 15
20	1,1,2-Trichloroethane	4.381	4.603	E3 -5.1 15
21	Dibromochloromethane	11.247	11.309	E3 -0.6 15
22	Bromoform	11.911	13.606	E3 -14.2 15
24	Toluene	10.203	8.703	E3 14.7 15
25	Tetrachloroethene	7.979	7.542	E3 5.5 15
27	Chlorobenzene	15.646		E3 13.1 15
28	Ethylbenzene	6.362	5.990	E3 5.8 15
29	<pre>Xylene (total)</pre>	24.539	22.023	E3 10.3 15
30	Styrene	11.180	12.414	E3 -11.0 15
31	1,1,1,2-Tetrachloroethane	9.059	8.053	E3 11.1 15
32	1,1,2,2-Tetrachloroethane	12.744	14.100	E3 -10.6 15
33	FREON-11	11.051	9.089	E3 17.8 20
35	FREON-12	10.985		E3 -5.5 20
36	FREON-113	10.158		E3 19.9 20
43	Freon-22		292.740	-11.7 20
44	Freon-141B	9.452	9.187	E3 2.8 20

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\VOF2905.D Vial: 1

Acq On : 30 Jul 2012 8:04 am
Sample : STANDARD 50 ng
Misc : 30JULY12 Operator: Raphe HGS Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: rteint.p

Method : C:\HPCHEM\1\METHODS\070112N.M (RTE Integrator)
Title : FULL SCAN

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF		%Dev <i>l</i>	AccRge	
1	Vinyl Chloride Bromomethane Chloroethane 1,1-Dichloroethene Acetone Methylene Chloride 1,2-Dichloroethene (total)	454.157	435.320		4.1	20	
2	Bromomethane	164.647	140.140		14.9	20	
3	Chloroethane	2.701	2.414	E3	10.6	20	
4	1,1-Dichloroethene	4.132	3.807	E3	7.9	15	
5	Acetone	4.931	4.745	E3	3.8	15	
6	Methylene Chloride	1.646	1.659	E3	-0.8	15	
7	1,2-Dichloroethene (total)	9.615	8.522	E3	11.4	15	
8	1,1-Dichloroethane Chloroform	9.104	8.357	E3	8.2	15	
9	Chloroform	11.748	10.740	E3	8.6	15	
10	1,2-Dichloroethane	5.352	4.567	E3	14.7	15	
11	1,2-Dichloroethane 2-Butanone	5.680	6.221	E3	-9.5	15	
12	1,1.1-Trichloroethane Carbon Tetrachloride Benzene Trichloroethene 1,2-Dichloropropane	16.632	14.559	E3	12.5	15	
13	Carbon Tetrachloride	10.696	9.645	E 3	9.8	15	
14	Benzene	17.745	15.250	E3	14.1	15	
15	Trichloroethene	8.629	7.622	Е3	11.7	15	
16	1,2-Dichloropropane	6.373	6.140	E3	3.7	15	
17	Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Dibromochloromethane Bromoform 4-Methyl-2-Pentanone Toluene Tetrachloroethene 2-Hexanone Chlorobenzene Ethylbenzene Xylene (total) Styrene 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	11.632	11.632	E3	0.0	15	
18	cis-1,3-Dichloropropene	8.166	8.613	Е3	-5.5	15	
19	trans-1,3-Dichloropropene	5.846	5.498	ЕЗ	6.0	15	
20	1,1,2-Trichloroethane	4.381	4.416	E3	-0.8	15	
21	Dibromochloromethane	11.247	12.456	E3	-10.7	15	
22	Bromoform	11.911	12.410	E3	-4.2	15	
23	4-Methyl-2-Pentanone	11.417	10.071	ЕЗ	11.8	15	
24	Toluene	10.203	10.114	ЕЗ	0.9	15	
25	Tetrachloroethene	7.979	7.700	E3	3.5	15	
26	2-Hexanone	6.102	6.555	E3	-7.4	15	
27	Chlorobenzene	15.646	13.501	E3	13.7	15	
28	Ethylbenzene	6.362	5.649	E3	11.2	15	
29	Xylene (total)	24.539	21.483	E3	12.5	15	
30	Styrene	11.180	9.939	E3	11.1	15	
31	1,1,1,2-Tetrachloroethane	9.059	8.544	E3	5.7	15	
32	1,1,2,2-Tetrachloroethane	12.744	13.965	E3			
33	FREON-11	11.051	9.649	E3			
35	FREON-11 FREON-12 FREON-113 Freon-22 Freon-141B	10.985	11.024	E3			
36	FREON-113	10.158	9.275	Ε3	8.7		
43	Freon-22	261.963	219.240				
4.4	Freon-141B	9.452	8.103	Ε3	14.3	20	

Evaluate Daily LCS Report

Data File : C:\HPCHEM\1\DATA\VOF2924.D Vial: 1

Acq On : 30 Jul 2012 6:40 pm Sample : LCS 50 ng Misc : 30JULY12 Operator: Raphe HGS Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: rteint.p

Method : C:\HPCHEM\1\METHODS\070112N.M (RTE Integrator)
Title : FULL SCAN

Last Update : Mon Jul 30 19:02:39 2012 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF		%Dev	AccRge	
1	Vinyl Chloride Bromomethane Chloroethane 1,1-Dichloroethene Methylene Chloride	454.157	364.900		19.7		
2	Bromomethane	164.647	178.440		-8.4	25	
3	Chloroethane	2.701	2.185	E3	19.1	25	
4	1,1-Dichloroethene	4.132	3.380	Е3	18.2	20	
6	Methylene Chloride	1.646	1.504	Е3	8.6	20	
7	1,2-Dichloroethene (total)	9.615	8.422	E3	12.4	20	
8	1,1-Dichloroethane	9.104	7.425	Е3	18.4	20	
9	1,1-Dichloroethane Chloroform	11.748	10.185	Е3	13.3	20	
10	1,2-Dichloroethane	5.352	4.373	E3	18.3	20	
12	1 1 1 The ablance theme	1 (())	12 205	Е3	20.0	20	
13	Carbon Tetrachloride	10.696	9.445	Е3	11.7	20	
14	Carbon Tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Dibromochloromethane	17.745	14.578	Е3	17.8	20	
15	Trichloroethene	8.629	6.912	E3	19.9	20	
16	1,2-Dichloropropane	6.373	6.326	E3	0.7	20	
17	Bromodichloromethane	11.632	9.831	Е3	15.5	20	
18	cis-1,3-Dichloropropene	8.166	7.268	Е3	11.0	20	
19	trans-1,3-Dichloropropene	5.846	6.438	Е3	-10.1	20	
20	1,1,2-Trichloroethane	4.381	3.820	Е3	12.8	20	
21				ЕЗ	2.7	20	
22	Bromoform Toluene	11.911	11.582	E3	2.8	20	
24	Toluene	10.203	9.758	E3	4.4	20	
25	Tetrachloroethene Chlorobenzene Ethylbenzene Xylene (total) Styrene	7.979	7.184	E3	10.0	20	
27	Chlorobenzene	15.646	13.853	E3	11.5	20	
28	Ethylbenzene	6.362	5.867	Е3	7.8	20	
29	Xylene (total)	24.539	22.995	Е3	6.3	20	
30	Styrene	11.180	9.775	Е3	12.6	20	
31	1,1,1,2-Tetrachloroethane	9.059	7.532	E3	16.9	20	
32	1,1,2,2-Tetrachloroethane	12.744	11.357	Е3	10.9	20	
33	FREON-11	11.051	10.851	E3	1.8		
35	FREON-12	10.985	9.240	Е3	15.9	25	
36	FREON-113	10.158	8.491	Е3	16.4		
43	Freon-22	261.963	239.100		8.7		
44	Freon-141B	9.452	7.657	E3	19.0	25	

INITIAL CALIBRATION BY FULL SCAN MASS SPEC

LAB NAME: HydroGeoSpectrum DATE: 30 July 2012

ANALYST:Raphe Pavlick STD LOT#:ULTRA CG1988 INSTRUMENT ID:2415A8202

Tallakunt hi MEDAW Biki Mikhili FALM II WUBKILILI II WIBKILILI Ki Kampakilikun

	Compound	1000	100	20	5	500	Avg	%RS	D A	AccRge
1)	Vinyl Chloride	1.352	1.052	1.004	1.041	1.465	1.183	E3 1	7.82	30
2)	Bromomethane	1.167	0.820	1.640	1.702	1.146	1.295		8.62	30
3)	Chloroethane	5.652	4.388	4.505	8.278	5.724	5.709	E2 2	7.41	30
4)	1,1-Dichloroethene	1.578	1.196	1.535	1.814	1.648	1.554	E3 1	4.58	20
6)	Methylene Chloride	1.794	1.561	1.815	2.105	1.626	1.780	E3 1	1.87	20
7)	1,2-Dichloroethene (c		2.237	2.651	2.669	2.115	2.418	E3 1	1.74	20
8)	1,1-Dichloroethane	3.561	3.515	3.828	4.190	3.074	3.634	E3 1	1.35	20
9)	Chloroform	2.880	3.019	3.010	2.893	1.802	2.721	E3 1	9.02	20
10)	1,2-Dichloroethane	2.735	3.257	2.714	2.466	1.843	2.603	E3 1	9.71	20
12)	1,1,1-Trichloroethane	1.996	2.114	2.022	2.327	1.879	2.067	E3	8.09	20
13)	Carbon Tetrachloride	1.902	2.322	2.175	2.681	1.592	2.134	E3 1	9.38	20
14)	Benzene	0.989	1.010	0.735	0.669	1.028	0.886	E4 1	9.20	20
15)	Trichloroethene	1.462	1.386	1.540	1.911	1.205	1.501	E3 1	7.38	20
16)	1,2-Dichloropropane	3.679	3.815	4.852	4.451	3.674	4.094	E3 1	2.98	20
17)	Bromodichloromethane	1.281	1.265	1.488	1.726	1.180	1.388	E3 1	5.86	20
18)	cis-1,3-Dichloroprope	1.328	1.536	1.258	1.008	1.317	1.289	E3 1	4.67	20
19)	trans-1,3-Dichloropro	5.858	6.748	5.996	5.622	6.162	6.077	E2	6.98	20
20)	1,1,2-Trichloroethane	1.576	1.626	1.912	2.127	1.434	1.735	E3 1	6.12	20
21)	Dibromochloromethane	1.136	1.335	1.180	1.744	1.125	1.304	E3 1	9.91	20
22)	Bromoform	1.045	1.104	0.879	0.644	1.028	0.940	E3 1	9.67	20
24)	Toluene	4.166	4.234	5.141	5.875	3.782	4.640	E3 1	8.36	20
25)	Tetrachloroethene	1.016	1.362	1.062	1.367	0.955	1.152	E3 1	7.13	20
27)	Chlorobenzene	4.087	4.735	5.112	6.189	3.900	4.805	E3 1	9.05	20
28)	Ethylbenzene	1.978	2.636	2.686	2.401	1.994	2.339	E3 1	4.53	20
29)	Xylene (total)	0.668	0.771	0.835	1.013	0.650	0.787	E4 1	8.69	20
30)	Styrene				4.835				8.57	20
31)	1,1,1,2-Tetrachloroet	0.998	1.077	1.163	1.500	0.987	1.145	E3 1	8.40	20
32)	1,1,2,2-Tetrachloroet	1.648	1.913	2.112	2.435	1.589	1.940	E3 1	7.93	20
33)	FREON-11	4.354	3.619	5.120	5.370	3.913	4.475	E2 1	6.87	30
34) S	Deutero-chloroform	3.748	3.582	3.530			3.620	E2	3.14	25
35)	FREON-12	1.817	1.425	1.412	2.422	1.669	1.749	E2 2	3.63	30
36)	FREON-113	1.229	0.917	1.242	2.008	1.317	1.343	E3 2	9.97	30
38) G	HYDROCARBONS		3.460				3.460	E3	0.00	30
39) s	D6-BENZENE		1.409				1.410	E 3	5.36	25
4 1) S	D6-ACETONE		4.293				4.442		3.42	25
42) S	D2-Dichloromethane		4.343				4.464		2.87	25
43)	Freon-22				1.076				2.46	30
44)	Freon-141B				1.605	1.274			7.79	30
53) S	D8-TOLUENE	1.036	1.047	1.099			1.060	E3	3.15	25

Evaluate INITIAL LCS Report

Data File : C:\HPCHEM\1\DATA\WOB9132.D Vial: 1 Acq On : 30 Jul 2012 9:58 am Operator: Raphe

Sample : LCS 50 ng Inst : GC/MS

Ins

Misc : 30JULY12 Multiplr: 1.00

MS Integration Params: rteint.p

Method : C:\HPCHEM\1\METHODS\N073012A.M (RTE Integrator)
Title : FULL SCAN

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50 Max. R.T. Dev

0.50min

Max. RRF Dev : 25 Max. Rel. Area : 150

	Compound	AvgRF	RF CCRF		%Dev A	.ccRge
1	Vinyl Chloride	1.183	1.034	E3	12.6	20
2	Bromomethane	129.493	134.880		-4.2	20
3	Chloroethane	570.938	493.400		13.6	20
4	1,1-Dichloroethene	1.554	1.540	E 3	0.9	15
6	Methylene Chloride	1.780	1.588	E 3	10.8	15
8	1,1-Dichloroethane	3.634	3.132	E3	13.8	15
9	Chloroform	2.721	2.459	E 3	9.6	15
10	1,2-Dichloroethane	2.603	2.714	E 3	-4.3	15
12	1,1,1-Trichloroethane	2.067	1.829	E 3	11.5	15
13	Carbon Tetrachloride	2.134	2.037	E 3	4.5	15
14	Benzene	8.863	9.656	E 3	-8.9	15
15	Trichloroethene	1.501	1.696	E 3	-13.0	15
16	1,2-Dichloropropane	4.094	3.526	E 3	13.9	15
17	Bromodichloromethane	1.388	1.207	E 3	13.0	15
18	cis-1,3-Dichloropropene	1.289	1.425	E 3	-10.6	15
19	trans-1,3-Dichloropropene	607.724	667.960		-9.9	15
20	1,1,2-Trichloroethane	1.735	1.596	E 3	8.0	15
21	Dibromochloromethane	1.304	1.182	E 3	9.4	15
22	Bromoform	0.940	0.910	E 3	3.2	15
24	Toluene	4.640	4.495	E 3	3.1	15
25	Tetrachloroethene	1.152	1.186	E 3	-3.0	15
27	Chlorobenzene	4.805	4.426	E 3	7.9	15
28	Ethylbenzene	2.339	2.382	E 3	-1.8	15
29	Xylene (total)	7.874	7.989	E 3	-1.5	15
30	Styrene	4.533			-10.3	15
31	1,1,1,2-Tetrachloroethane	1144.912	2 1106.98	0	3.3	15
32	1,1,2,2-Tetrachloroethane	1.940	1.685	E 3	13.1	15
33	FREON-11	447.540	406.560		9.2	20
35	FREON-12	174.885	176.320		-0.8	20
36	FREON-113	1.343	1.240	E 3	7.7	
43	Freon-22		824.240		8.3	20
44	Freon-141B	1369.180	1406.90	0	-2.8	20

Evaluate Daily LCS Report

Data File : C:\HPCHEM\1\DATA\VOF2924.D Vial: 1

Acq On : 30 Jul 2012 6:40 pm Sample : LCS 50 ng Misc : 30JULY12 Operator: Raphe HGS Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: rteint.p

Method : C:\HPCHEM\1\METHODS\070112N.M (RTE Integrator)
Title : FULL SCAN

Last Update : Mon Jul 30 19:02:39 2012 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF		%Dev AccRge		
1	Vinyl Chloride	454.157	364.900		19.7	25	
2	Bromomethane	164 647	178 440		-8.4	25	
3	Chloroethane 1,1-Dichloroethene Methylene Chloride 1,2-Dichloroethene (total)	2.701	2.185	Ε3	19.1	25	
4	1,1-Dichloroethene	4.132	3.380	Е3	18.2	20	
6	Methylene Chloride	1.646	1.504	Е3	8.6	20	
7	1,2-Dichloroethene (total)	9.615	8.422	ЕЗ	12.4	20	
8	1,1-Dichloroethane	9.104 11.748	7.425	ЕЗ	18.4	20	
9	Chloroform	11.748	10.185	Е3	13.3	20	
10	1,2-Dichloroethane	5.352	4.373	Е3	18.3	20	
12	1,1,1-Trichloroethane	16.632	13.305	Е3	20.0	20	
13	Carbon Tetrachloride	10.696	9.445	Е3	11.7	20	
14	Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Dibromochloromethane Bromoform	17.745	14.578	Е3	17.8	20	
15	Trichloroethene	8.629	6.912	Е3	19.9	20	
16	1,2-Dichloropropane	6.373	6.326	Е3	0.7	20	
17	Bromodichloromethane	11.632	9.831	Е3	15.5	20	
18	cis-1,3-Dichloropropene	8.166	7.268	Ε3	11.0	20	
19	trans-1,3-Dichloropropene	5.846	6.438	Е3	-10.1	20	
20	1,1,2-Trichloroethane	4.381	3.820	Ε3	12.8	20	
21	Dibromochloromethane	11.247	10.938	Ε3	2.7	20	
22	Bromoform Toluene	11.911	11.582	Ε3	2.8	20	
24	Toluene	10.203	9.758	Ε3	4.4	20	
25	Tetrachloroethene	7.979	7.184	Е3	10.0	20	
27	Chlorobenzene	15.646	13.853	Е3	11.5	20	
28	Chlorobenzene Ethylbenzene Xylene (total) Styrene	6.362	5.867	Е3	7.8	20	
29	Xylene (total)	24.539	22.995	Е3	6.3	20	
30	Styrene	11.180	9.775	E3	12.6	20	
31	1,1,1,2-Tetrachloroethane	9.059	7.532	Е3	16.9	20	
32	1,1,2,2-Tetrachloroethane	12.744	11.357	Е3	10.9	20	
33	FREON-11	11.051	10.851	ЕЗ	1.8	25	
35	FREON-12	10.985	9.240	Е3	15.9	25	
36	FREON-113	10.158	8.491	E3	16.4	25	
43	Freon-22	261.963	239.100		8.7	25	
44	Freon-141B	9.452	7.657	E3	19.0	25	

Attachment C

Laboratory Report Enviro-Chem Laboratory

Enviro - Chem, Inc. 1214 E. Lexington Avenue. Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: July 26, 2012

Mr. Rick Fero Fero Environmental Engineering, Inc. 431 W. Lambert Road, Suite 305 Brea, CA 92821 Tel(714)256-2737 Fax(714)256-1505

Project: 758 Continental Heat Lab I.D.: 120720-11 through -28

Dear Mr. Fero:

The analytical results for the soil samples, received by our lab on July 20, 2012, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincercly,

Curtis Deallets

Vice President/Program Manager

Andy Wang Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

DATE RECEIVED: 07/20/12

MATRIX: SOIL

DATE EXTRACTED: 07/24/12

DATE SAMPLED: 07/20/12
REPORT TO:MR. RICK FERO

DATE ANALYZED: 07/24/12 DATE REPORTED: 07/26/12

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D. LAB I.D. C4-C10 C11-C22 C23-C35 DF MW6m 85 120720-27 75.6^ 137* 158 1 METHOD BLANK ND ND ND ND 1		PQL	10	10	50	
	METHOD BLANK		ND	ND	ND	1
SAMPLE I.D. LAB I.D. C4-C10 C11-C22 C23-C35 DE	MW6m 85	120720-27	75.6	137*	158	1
	SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF

COMMENTS

C4-C10 - GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 - MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT - DF X PQL

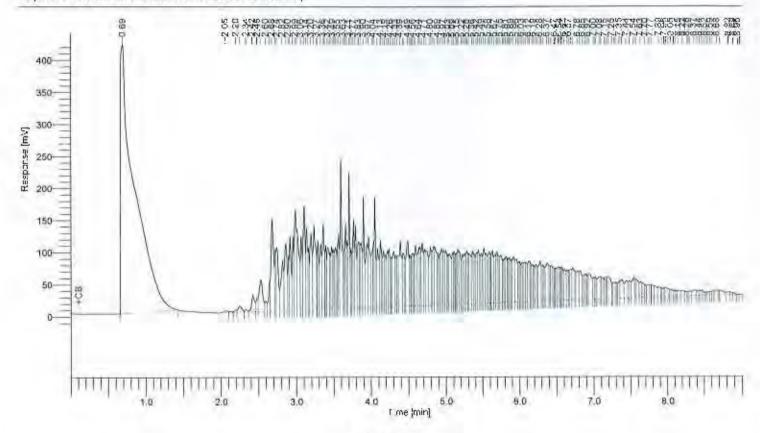
ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

- * = PEAKS IN GASOLINE RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF GASOLINE STANDARD
- * = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

Software Version : 6.3.2.0648 Sample Name : 120720-27


Sample Name : GC-I Instrument Name : GC-I Rack/Vial : 0/24 Sample Amount : 1,000000 Cycle : 7 Date
Data Acquisition Time
Channel

7/25/2012 1:49:02 PM 7/24/2012 3:11:39 PM

Operator Dilution Factor Manager 1.000000

Result l'Île : D:\GC DATA\GC-\\li02012\\1207\\1207\\1207\\4032\\foxdots\
Sequence l'île : D:\GC DATA\GC-\\\102012\\1207\\1207\\41207\41207\\41207\41207\41207\\41207\41207\41207\\41207\41207\\41207\41207\41207\412

20/2

8015 Results

Component Name	Area [uV*sec]	Adjusted Amount
C4-C10	3178749	755.8
C11-C22	11667846	1369.7
C23-C35	7168013	1591.6
	22014009	3707.1

Enviro Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B QA/QC Report

Date Analyzed:

7/24/2012

Units:

mg/Kg (ppm)

Matrix:

Soil/Solid/Sludge/Liquid

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

120723-7 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	2500	2810	112%	2980	119%	6%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP
C11~C22 Range	200	163	81%	75-125

Analyzed and Reviewed By:

Final Reviewer:

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIT.
DATE SAMPLED: 07/20/12
REPORT TO: MR. RICK EXBO

DATE RECEIVED: 07/20/12 DATE ANALYEED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 5 LAB I.D.: 120720-11

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	NU	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANS	ND	0.305
2-BUTANONE (MEK)	מא	0.920
N-BCTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	NE	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	GM	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLÖROSTHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: D7/20/12
REPORT TO: MR. RICK PERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE 1.D.: MW6m 5 LAB C.D.: 120720-17

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-D1CHLOROPROPANE	ON	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ИĎ	0.005
Z-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0,005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENS	ND	0,003
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	NU	0.005
1,1,2,2-TETRACHLOROETHANE	NQ	0.005
TETRACHLOROETHENE (PCE)	0.295	0.305(X5)
TOLTENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND CN	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0,003

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

CAL-DHS CERTIFICATE # 1555

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Reat

MATRIX: SOIL DATE SAMPLED: G7/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 10 IAB I.D.: 120723-12

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICFLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.023
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBINZENF,	ND	0.005
TERT-SCTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.013
CARSON WHITRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CELOROFTHANE	ND	0.005
CHLOROFORM	N.D	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DJCHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETEANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	N _i D	0.005
1,1-DICHLOROETHENE	ND CIN	0.005
CIS-1,2-DICHLOROETHENE	9.027	0.005
TRANS-1, 2-DICHLOROKTHENE	ND	0.005
1,2-DICHLOROPROPANE .	NII	0.005

---- TO BE CONTINUED/ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/23/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 10 LAB T.D.: 120720-12

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1.3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	C.005
1,1-DICHLOROPROPENE	ND	0,005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	NU	0.005
ETHYLBENZENE	ND	0.005
2-HEXANGNE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
TSOPROPYLBENZENE	ND:	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETERR (MTBE)	ND	0.005
METHYLENE CHLORIDE	ИD	0.010
NAPHTHALENE	ND	0.005
N-PROPYLEENZENE	NU	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	1.30	0.005(X10)
TOLUENE	NT:	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
_,1,1-TRICHLCROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.082	0.005
TRICHLOROPLUOROMETHANE	טא	0,005
1,2,3~TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZHNE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHEORIDM	ND	0,005
M/P-XYLENE	ND	0.010
C-XYLENS	ND	0.005

COMMENTS POI - PRACTICAL QUANTITATION LIMIT

NU = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICACE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX:SOIL
DATE SAMPLED:07/20/12
REPORT TO:MR. RICK FERO

DATE RECRIVED: 07/20/12
DATE ANALYZED: 07/23/32

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 15

LAB I.D.: 120720-13

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 ACETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE 0.005 ND BROMOCHLOROMETHANE 0.005 ND ND 0.005 BROMODICHLOROMETHANE ND 0.005 BRCMOFORM BROMOMETHANE ND 0.005 2-BUTANONE (MEK) ND 0.020 0.005 N-BUTYERENZENE ND ND 0.005 SEC-BUTYLBENZENE 0.005 TERT-BUTYLBENZENE ND CARBON DISULFIUE ND 0.010 0.005 CARBON TETRACHLORIDE NU 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 ND 2-CHLOROTOLUENE 0.005 4-CHLOROTOLUENE NU DIBROMOCHLOROMETHANE ND 0.005 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND ND 0.005 1,2-DIBROMOETHANE DIBROMOMETHANK ND 0.005 1,2-DICHLOROBENZENE NO 0.005 ND 0.005 1,3-DICHLOROBENZENE 0.005 ND 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE ND 0.005 1.1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 0.005 ND 1,1-DICELORGETHENE 0.022 CIS-1,2-DICHLOROETHENE 0.005 ND 0.005 TRANS-1, 2-DICHLOROETHENE 0.005 1,2-DICHLOROPROPANE ND

---- TO BE CONTINUED, ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 15

LAB I.D.: 120720-13

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ИЛ	0_005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLEHNZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0,005
TETRACHLOROETHENE (PCE)	1,80	0.005(X10)
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	CM	0.003
TRICHLOROETHENE (TCE)	0.057	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0,005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.003
VINYL CHLORIDE	ND	G.005
M/P-XYLENE	ND	0.310
O-XYLENM	NC	0.005

COMMENTS POL - PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

ell

Envira - Chem, Inc.

1214 E. Lexington Avenus, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SCIL DATE SAMPLED: <u>07/20/12</u> REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 20

LAB T.D.: 120720-14

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1	
ACETONE	ND	0.020	
SYNZENE	ND	0.005	
BROMOBENZENE	ND	0.005	
3ROMOCIILOROMETHANE	ND	0.005	
BROMODICHLOROMETHANE	ND	0.005	
BROMOFORM	ND	0.005	
BROMOMETHANE	ND	0.005	
2-BUTANONE (MEK)	ND	0.020	
N-BUTYLBENZENE	ND	0.005	
SEC-BUTYLBENZENE	ND -	0.003	
TERT-BUTYLBENZENE	ND	0.005	
CARBON DISULFIDE	ND	0.010	
CARBON TETRACHLORIDE	ND	0.005	
CHLOROBENZENE	ND	0.005	
CHLOROETHANE	ND	0.005	
CHLOROFORM	ND	0.005	
CHLOROMETHANE	ND:	0.005	
2-CHLOROTOLUENE	CM	0.005	
4-CHLOROPOLUENE	ND	0.005	
DIBROMOCHLOROMETHANE	ND	0.005	
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005	
1,2-DIBROMOTTHANE	ND	0.005	
DIBROMOMETHANE	ND	0.005	
1,2-DICHLOROBENZENE	ND	0.005	
1,3-DICHLOROBENZENE	ND	0.005	
1,4-DICHLOROBENZENE	ND	0.005	
DICHLORODIFLUOROMETHANE	ND	0.005	
1,1-DICHLOROETHANE	IND.	0.005	
1,2-DICHLORORTHANK	ND	0.005	
1,1-DICHLOROETHENE	ND	0.005	
CIS-1,2-DICHLOROETHENE	0.026	0.005	
TRANS-1, 2-DICHLOROETHENE	ND	0.005	
1,2-DICHLOROPROPANE	ЙD	0.005	

---- TO BE CONTINUED ON PACK #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO:MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED:07/26/12

LAB T.D.: 120720-14 SAMPLE I.D.: MW6m 20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND.	0.005
2,2-DICHLOROPROPANE	ND	0,005
1,1-DICHLOROPROPENE	CM	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
BTHYLEENZE <u>NE</u>	ND	0.005
2-HEXANONE	CN	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	NI)	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	NO	0.010
NAPHTHALENE	СИ	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0,005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	CIM	0.005
TETRACHLOROETHENE (PCE)	1.59	0.005(X10)
TOLUENE	NU	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0,005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.074	0.005
TRICHLOROFLUOROMETHANE	ND	5.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	NI)	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

NO = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 25 LAB 1.D.: 120720-15

ANALYSIS: VOLATILE ORGANICS, EFA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0,020
BENZENE	ND	0.005
BROMOBENZENE	NO	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0,005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.000
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ИD	0.005
DIBROMOCHLOROMETHANE	MD	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	No	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	NO	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0,005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.136	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	NU ,	0.005

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX:SOIL DATE SAMPLED: 07/20/12 REPORT TO:MR. RICK FERG DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 25 LAS I.D.: 120720-15

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHIOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHTOROPROPENE	NU	0,003
CTS-1,3-DICHLOROPROPENE	ND	0,005
TRANS-1, 3-DTCHLOROPROPENE	ND	0.005
ETHYTBENZENE	ND	0.005
2-HEXANONE	ND_	0.020
HEXACIIL OROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTODUENE	ND	0,005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTE	E) NO	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	C.005
N-PROPYLHENZENE	NO	0.005
STYRENE	ND	0.005
1,1,1,2-TRTRACHLOROETHANE	NIX	0.003
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACILLOROFTHENE (PCE)	2,60	0,005(X50)
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANS	ND	0.005
1,1,2-TRICKLOROETHANE	ND	0.005
TRICHLOROETHRNE (ICE)	0.170	0.005
TRICHLOROFLUOROMETHANE	ЙŌ	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TETMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHY BENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	CM	0.005

COMMENTS PQL - PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DES CERTIFICATE # 1555

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REFORTED: 07/26/12

SAMPLY I.D.: MW6mm 30 LAB I.D.: 120720-18

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONR	ND	0.020
BENZENE	0.007	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
3ROMOFORM	ND	0.005
BROMOMETHANE	ND	0,005
2-BUTANONZ (MEK)	ND	0.020
N-BUTYLDENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0,005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0,005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CELOROFORM	ND	0,005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLDENK	ND	0.005
4-CHLOROTOLUENE	NU	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	NI)	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.085
1,4-DICHLOROBENZENE	NI)	0.005
DICHLORODIFLUOROMETHANE	NQ	0.005
1,1-DICHLOROETHANE	ND	0.305
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHKNE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.185	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: C7/20/12
REPORT TO: MR. RICK FERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE T.D.: MW6m 30

TAB 1.D.: 120720-16

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DTCHLOROPROPANE	NO	0.005
1,1-DICHLORGPROPENE	ND	3.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPHNE	ND	0.005
ETUYI.BENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROSUTAD ENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-190PROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	Ni)	0.005
METHYLENE CHLORIDE	ND	0.010
MAPRITHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRKNE	NQ	0.005
1,1,1,2-TETRACHLOROETHANE	ND	€.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	3.51	0.005(X50)
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	NQ	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.158	0,005(X5)
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND.	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0,010
O-XYLENE	ND	0.005

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

CAL-DIS CERTIFICATE # 1555

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX:SOTL DATE SAMPLED:07/20/12 REPORT TO:MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 35

LAB I.D.: 120720-17

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/82608, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENZ	0,013	0.005
PROMOBENZANE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0,005
BROMOFORM	ND:	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0,020
N-BUTYLBENZENE	NU	0.005
SEC-BUTYLBENZENE	ND	0,005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ИĎ	0,010
CARBON TETRACHLORIDE	ND	0.905
CHLOROBENZENE	ND	0.005
CHLOROFTHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUFNE	ND	0.003
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	GN	0.005
1,4-DICHLOROBENZENE	MD	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ИD	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	NI)	0.005
CIS-1,2-DICHLOROETHENE	0.126	0.005(X5)
TRANS-1,2-DICHLOROETHENE	NI)	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: C7/20/12
REPORT TO: MR. RICK FERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE 1.D.: NW6m 35

LAB I.D.: 120720-17

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHUOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	NO	0.005
1,1-DTCHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ИD	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ЙÜ	0.005
2-HEXANONE	ND	C.020
HEXACHLOROBUTADIENE	ND	0.005
SCPROPYLBENZENE	ИD	0.005
4-ISOPROPYLTCLUENE	ND	C.005
4-METHYL-2-PENTANONE (MTBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTB	E) ND	0.005
METHYLENE CHLCRIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.305
1,1,1,2-TETRACHLOROETHANE	ND	0.305
1,1,2,2-TETRACHLOROETHANE	ND	0.005
FETRACHLOROETHENE (PCE)	2,51	0.005(X50)
IOLUENE	ИD	0.005
1,2,3-TRICHDOROBENZENE	ND	0.005
2,2,4-TRICHLOROBENZENE	ND.	0.005
,1,1-TRICHLORORTEANN	ND	0.005
1,1,2-TRICHLORGETHANE	ND	0.005
PRICHLOROETHENE (TCE)	0.206	0.005(X5)
PRICHLOROFIJOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETEYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	6.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND:	0.010
D-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1855

fall

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE 1.D.: MW6m 40

LAB 1.D.: 120720-18

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0,020
BENZRNE	ND	0.005
BROMOBENZFNE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BRCMOFORM.	ND	0.005
BROMOMETHANE	ND	0,005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZERR	GN	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLORORENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CILOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-UIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHTOROBENZEKE	ДÜ	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	C.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.049	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0,005
I,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUADAON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: <u>SOLL</u>
DATE SAMPLED: <u>07/20/12</u>
REPORT TO:MR. RICK PERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REFORTED: 07/26/12

SAMPLE I.D.: MW6m 40 LAB 1.D.: 120720-18

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER S	AMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.003
2,2-DICHLOROPROPANE	ND	0.005
1,1-D1CHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENS	ND	0.005
ISOPROPYLBENZENE	СИ	0,005
4-1SOPROPYLTÖLUENE	ПD	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL bent-BULYL STARR (MTBE)	D	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	р	0.005
STYRENS	ND	0.005
1,1,1,2-TETRACHLORGETHANE	ทบ	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROSTHENE (PCE)	0.097	0.005
TCLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0,005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.010	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	MI)	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	MD	0.005
M/P-XYLENE	ND	0,010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

NO = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DES CERTIFICATE # 1555

COSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO:MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/32 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 45

IAB J.D.: 120726-19

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	GN	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	NI)	0.005
BROMODICHLOROMETHANE	ND	0.005
EROMOFORM	ND	2.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BCTYLHENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENS	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0,005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CELOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DISROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	MD	0.005
1,3-DICHLOROBENZENE	ND	0,005
1,4-DICHLOROBENZENE	ND .	0.005
DICHLORODIFLUOROMETHANE	NO	0.005
1,1-DICHLOROETHANE	N1)	6.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.013	0.003
TRANS-1,2-DICHLOROETHENE	ND.	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED/ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PRCJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK PERQ DATE ANALYZED: 07/23/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 45

LAB I.D.: 120720-19

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	CN	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
STHYLBENZENE	ND	0.035
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.003
ISOPROPYLBENZENE	ND	0.905
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	N1)	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND -	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0,005
TETRACHLOROFIHENE (PCE)	0.015	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	D.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ФЙ	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

CAL-DIS CERTIFICATE # 1555

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: 07/20/12
REPORT TO: MR. RICK FERO

DATE RECETVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 50 LAB I.D.: 120720-20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2.
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	מא	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BCTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0,010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CELOROF THANK	ND	0.005
CULOROFORM	ND	0.005
CHLOROMETEANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHTOROTOLUENE	טא	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLORGPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND -	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	NO.	0.005
DICHLORODI FLUOROMETHANE	ND	0.005
1,1-DICELOROETHANE	NO	0,005
1,2-DICKLOROETHANE	ND	C.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.005	0.005
TRANS-1,2-DICHLOROETHKNE	CM	0.005
1,2-dichloropropane	ND	0.005

---- TO BE CONTINUED PAGE #2 ----

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO

SAMPLE I.D.: MW6m 50

DATE ANALYZED: 07/23/12 DATE REPORTED: 07/23/12

LAB I.D.: 120720-20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANK	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICKLOROPROPENE	ND	0.008
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENZ	NC	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENI	ND	0.003
4-METHYL-2-PENCANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBK)	ND	0.005
METHYLENE CHLORIDE	CIN	0,010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	NIX	0.005
STYRENE	ND	0,005
1,1,1,2-TSTRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACPLOROETHANG	ND	0.005
TETRACHLOROETHENE (PCR)	0.014	0.005
YOLURNR	ND	0.005
1,2,3-TRICHLOROBENZENA	ND.	0.005
1,2,4-TRICHTOROBENZENE	MD	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,2,2-TRICHLOROETHANE	ND	0.005
TRICHLOROBTHENE (TCZ)	ND	0.003
TRICHLOROFLUOROMETHANE	ND	0,005
1,2,3-TRICHTOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ИД	0.005
M/P-XYLENE	ND	0.010
Q-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND - NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DES CERTIFICATE # 1555

COSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: 07/20/12
REPORT TO:MR. RICK FERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE 1.D.: MW6m 55

LAB I.D.: 120720-21

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACZTÓNE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	CM	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ИD	0.005
BROMOMETMANE	ND	0.005
2-BUTANONE (MEK)	СИ	8.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	MD	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0,005
2-CHLOROTOLUENE	ND	8,005
4-CIILOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	NEX	0.005
DIBROMOMETHANE	ND	0,005
1,2-DICHLOROBENZENE	NO	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	CM	0.005
1,1-DICKLOROETHANK	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.031	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FFRO

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 55

LAB 1.D.: 120720-21

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-D1CHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	NO	0.005
1,1-DICHLOROPROPENE	ND	0.003
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	NE	0.005
2-HEXANONE	ND	0,020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	NC	0.005
4-ISOPROPYLTOLUENE	ND	0,005
4-METHYL-2-PENTANONE (MIBK)	ИĎ	0.020
METHYL tert-BUTYL ETHER (MTBE) ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND,	0.005
STYRENE	NU	0.005
1,1,1,2-TETRACHLOROETHANE	CN	0,005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	0.386	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.305
TRICHLOROETHENE (TCE)	0.007	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	NU	0.003
M/P-XYLENE	ND	0.010
O-XYLENE	NI)	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATY # 1555

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 60

LAB I.D.: 120720-22

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kq = MILLIGRAM PER KILOGRAM = PFM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
RENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BRUMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BCTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	טמ	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYTBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANK	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHT.OROTOLUENE	บบ	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DTBROMO-3-CHLOROPROFANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZEKE	ND	0.005
1.4-DICHLOROBENZENE	ND	0.005
DICHLORODIFIUOROMETHANE	ND	0.005
1,1-DICHTOROFTHANS	ИD	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	UN	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANH	ND	0.005

--- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: <u>SOIL</u> DATE SAMPLED: <u>07/20/12</u> REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZMO: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 60 LA3 I.D.: 120720-22

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DTCHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROFENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	N2)	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-TSOPROPYL'TOLUENE	ND	0.005
4-METHYL-2-PENTANCHE (MIBK)	ND	0.020
METHYL tort-BUTYL ETHER (MIRE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACELOROFTHENE (PCE)	0.011	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.003
1,2,4-TRICHLOROBENZENE	ND	0.003
1,1,1-TRICELOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
J'RTCHLOROFT.UOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBINZENU	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENK	NI)	0.616
O-XYLENE	ND	0.005

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 65

LAB I.D.: 120720-23

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACSTONE	ND	0.020
BENZENE.	ND .	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
RROMOMETHANE	ND	0.005
2-BUTANONE (KEK)	ND	0.020
N-BUTYLARNZENE	ND	0.005
SEC-BUTYLBENZENS	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARRON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.0 <u>05</u>
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANR	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.003
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1.3-DICHLOROBENZENE	N1D	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	(I)	0,005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0,305
1,1-DICELOROETHENE	ИD	0.005
CIS-1,2-DICHLOROFTHENZ	0,079	0.005
TRANS-1,2-DICHLOROSTHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 -

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO:MR. RICK FERO DATE RECEIVED: 07/23/12 DATE ANALYED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE T.D.: MW6m 65 LAB 1.U.: 120720-23

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.003
CIS-1,3-DICHLOROPROPENE	ПÐ	0,005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENK	ND	0.005
Z-REXANORZ	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	CN	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPY/RENZENH	ND	0.005
STYRRNE	NU	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	0.041	0.005
TOLURNE	ND	0.005
1,2,3-TRICHLOROBENZENE	NO	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.006	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

NO = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

Enviro - Chem. Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

COSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: <u>07/20/12</u> REPORT TO: MR. RICK FTRO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/24/12

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 70 LAB I.D.: 120723-24

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANS	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.305
2-BCTANONE (MEK)	ND	0.020
N-BOTYLBENZENE	ND	0,005
SEC-BUTYLBENZENE	ИD	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLCROETHANE	ND	0.005
CHLOROFORM	NI)	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	NU	0.005
1,2-DIBROMOETHANE	ND	0.085
BIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	NU	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLORCHTHANE	ND	0.005
_,2-DICHLGROETHANE	ND	0.005
1,1-ULCHLORORTHENE	ND	0.005
CIS-1,2-DICHLOROETHENS	0.216	0.005
TRANS-1, Z-DICHLOROETHENE	ND	0.005
1,2-DICKLOROFROPANS	ND CONTINUE ON FAGE #2 -	€.005

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: 07/20/12
REPORT TO:MR. RICK FERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/24/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 70 LAB I.D.: 120720-24

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	MD	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
STHYLBENZENE	ND	0.005
2-HEXANONE	NE	0.020
HEXACHLOROBUTADI ENE	NI)	0.005
ISOPROPYLBENZENE	ND	0,005
1-ISOPROFYLTOLUENE	ND.	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CELORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ΝD	0.005
STYRENE	MI)	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANK	ND	0.005
TETRACHLOROETHENE (PCE)	0.115	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROSTHAME	ND	0.005
1,1,2-TRICHLOROSTHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.180	0.005(X5)
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYTBENZENE	ND	¢.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
C-XYLENE	ŊD	0.005

COMMENTS POL = PRACTICAL QUANCIPATION DIMIT

NC = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DES CERTIFICATE # 1555

Poli

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 75

LAB I.D.: 120720-25

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND.	3.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0,005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.013
CARBON TETRACHLORIDE	NO	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	N:)	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	NI)	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.117	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND CONSINUED ON PAGE #2 -	0.005

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Reat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 75 LAB J.D.: 120720-25

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICELOROPROPANE	ND	0.305
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ИЭ	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0,020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTIALENE	ND	0.005
N-PROPYLBENNENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	0.193	0.005
TOTUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.030	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	NU	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYI.RNZ	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION INIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DIS CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: 07/20/12 REPORT TO: MR. RICK FERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/24/12 DATE REPORTED: 07/26/12

LAB T.D.: 120720-26

SAMPLE I.D.: MW6m 80

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
3ROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ИD	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHIOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	NU	0.005
I, 2DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUCROMETHANE	ND	0.005
1,1-DICHLOROETHANE	NE	0.003
1,2-dichloroethane	NII	0.005
1,1-DICHLORGETEENE	NE	0.005
CIS-1,2-DICHLOROETHENE	6.058	0.003
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

- TO BE CONTINUEDAON PAGE #2 -

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: 07/20/12
REPORT TO: MR. RICK PERO

DATE RECEIVED: C7/20/12 DATE ANALYMED: 07/24/12 DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 80

LAB I.D.: 120720-26

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	NO	0.005
2,2-DICHLORGPROPANE	ND	0.005
1,1-DICHLORGPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-9EXANONE	ND	0.020
REXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	NI)	0.020
METHYL tert-BUTYL ETHER (MTHE)	ЙD	0.005
METHYLENE CHECRIDE	(SD)	0.010
NAFETHALENE	NE	0.005
N-PROPYLBENKENE	ND	0,005
STYRENE	ND	0.005
1,1,1,2-TETRACHLORQETHANE	ND	0.005
1,1,2,2-TETRACHLOROETEANE	ND	0.005
TETRACHLOROETHENE (PCE)	0.053	0.005
LOTORNE	ND	0.005
1,2,3-TRICHLOROBENZKNE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	KD	0.005
1,1,2-THICHLORGETHANE	ND	0.005
TRICHLORGETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYTBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.013
O-XYLENE	ND	0.005

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELIEW THE PQL DATA REVIEWED AND APPROVED HY:

CAL-DES CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

COSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE RECEIVED: 07/20/12
DATE SAMPLED: 07/20/12 DATE ANALYZED: 07/23/12
REPORT TO: MR. RICK FERO DATE REPORTED: 07/26/12

SAMPLE T.D.: MW6m 85 LAB I.D.: 120720-27

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PFM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
HANZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMSTHANE	ND	0.005
BROMODICHLOROMETHANE	NÐ	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENKENE	ND	0,005
SFC-BUTYLBENZENE	ND	0.005
TERT-BOWYLBENZENE	NU	0.005
CARBON DISULFIDM	ND	0,010
CARBON TETRACHLORIDE	ND	0,005
CHICROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHI,GROFORM	ZD	0.005
CHLOROMETHANE	ND	0.005
2-CHTOROTOLUENE	ND	0.005
4-CHLOROTOLUFNE	ND	0.005
DIBROMOCHLOROMETHANK	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	MD	0.005
1,2-CIBROMQETHANE	ND	0.005
DIBROMOMETHANE	ND	0,005
1,2-DICHTOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	NQ	0.005
1,1-DICULOROETHANE	ND	0.005
1,2-DICHLOROETHANK	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHTOROETHENE	MD	0.005
TRANS-1, 2-DICHLOROFTHENE	ND	0.005
1,2-DICHLOROPROPANE	CONTINUED ON PAGE #2 -	0,005

DATA REVIEWED AND APPROVED BY:

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

REPORT TO: MR. RICK FERO

MATRIX: SOIL DATE SAMPLED: 07/20/12 DATE RECEIVED: 07/20/12 DATE ANALYMED: 07/23/12

DATE REPORTED: 07/23/12

SAMPLE I.D.: MW6m 85

LAB 1.D.: 120720-27

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	UZI UZI	C.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
"RANS-1, 3-DICHLOROPROPENE	NU	0.005
ETHYLBERZENE	ИО	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.035
ISOPROPYLBENZENE	NO	0.005
4-ISOPROPYLTOLUENE	CN	0.005
4-METHYL-2-PENTANONE (MIBK)	N(I)	0.020
METHYL tert-BUTYL ETHER (MTRE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENS	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	0.027	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	NE	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICKLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	NI)	0.005
ATMAT CHTCKIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUARTITATION LIMIT

ND - NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: 07/20/12
REPORT TO:MR. RICK FERO

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

SAMPLE I.D.: MW6m 90

LAB T.D.: 120720-28

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ทบ	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	N.D	0.005
CARBON DISULFIDE	NI)	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	NU	0.005
CHT.CROETHANF,	ND	0.005
CHLOROFORM	NI)	0,005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHFOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROZIMANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	0.126	0.005
TRANS-1, 2-DICHLOROETHENE	NO	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED, ON FACE #2 ----

DATA REVIEWED AND APPROVED BY:

LABORATORY REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX:<u>SOIL</u>
DATE SAMPLED:<u>07/20/12</u>
REPORT TO:<u>MR. RICK FERO</u>

DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12 DATE REPORTED: 07/26/12

SAMPLE .D.: MW6m 90 TAB I.D.: 120720-28

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	C.005
2,2-DTCHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	NE	0.005
CIS-1,3-DTCHLOROPROPENE	ND	0.005
TRAKS-1, 3-DICHLOROPROPENE	ND	0,005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADI ENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANCNE (MIBK)	ND	0.020
METHYL tert-BUTYL WYHER (MIBE)	ND	0,005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	NO.	0.005
N-PROPYLBENZENE	CN	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND:	0.005
1,1,2,2-TETRACHLOROETEANE	ND	0.005
TETRACHLOROETHENE (PCE)	0.041	0.005
TOLUENE	NO	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	NO	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROSTHANE	ND	0.005
TRICHLOROETHENE (TCE)	0.035	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLKNE	CN	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DES CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL DATE SAMPLED: <u>07/29/12</u> REPORT TO: MR. RICK FERO DATE RECEIVED: 07/20/12 DATE ANALYZED: 07/23/12

DATE REPORTED: 07/26/12

METHOD BLANK FOR LAB I.D.: 120720-11 THROUGH -28

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	MD	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0,005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	NI)	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	UN	0.005
1,4-DICHLOROBENZENE	ИД	0.005
DTCHLORODIFLUOROMETHANE	ND	0.005
1,1-dichloroethane	ND	0.005
1,2-DICHLOROETHANE	ND	€.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	Nii	0.005
TRANS-1,2-DICHLORGETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND A	0.005

---- TO BE CONTINUED OF PAGE #2 ----

DATA RIVIEWED AND APPROVED BY;

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tei (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:

Fero Environmental Engineering, Inc.

431 W. Lambert Road, #305

Brea, CA 92821

Tel (714) 256-2737 Fax (714) 256-1505

PROJECT: 758 Continental Heat

MATRIX: SOIL
DATE SAMPLED: 67/20/12
REPORT TO: MR. BICK PERO

DATE RECEIVED: 07/20/22 DATE ANALYZED: 07/23/12

DATE REFORTED: 07/26/12

METHOD BLANK FOR LAB I.D.: 120720-11 THROUGH -28

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM
SAMPLE RESULT
PROPANE
ND

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0,005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CTS-1,3-DICHLOROPROPENE	ND.	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
RIEYLBENZENE	ND	0.005
2-REXANGNE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYL/TCL/UENE	<u>ND</u>	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ЙD	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENZ	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENMENE	ND	0.305
1,2,4-TRICHLOROSENZENE	ND	0.005
1,1,1-TRICHLOROWTHANK	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICKLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZERE	ČIN	0.005
VINYL CHLORIDE	ND	0.005
M/F-XYLENE	ND	6.010
O-XYLENE	ND	0.005

COMMENTS PQL - PRACTICAL QUANTITATION LIMIT ND - NON-DETECTED OR BELOW THE PQL AND

DATA REVIEWED AND APPROVED BY:

CAL-CHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

7/23-24/2012

Matrix:

Solid/Soil/Liquid

Machine:

C

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Splked Sample Lab I.D.:

120723-LCS1/2

Spiked Sample Lab I.O.	120/23-LG31/2								
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.056	113%	0.054	108%	5%	75-125	0-20
Chlorobenzene	0	0.050	0.047	94%	0.045	89%	4%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.051	101%	0.050	99%	2%	75-125	0-20
Toluene	0	0.050	0.052	104%	0.053	106%	2%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.054	109%	0.051	102%	7%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.059	118%	75-125
Chlorobenzene	0.050	0.043	86%	75-125
Chloroform	0.050	0.051	101%	75-125
1,1-Dichlorothene	0.050	0.060	119%	75-125
Ethylbenzene	0.050	0.042	85%	75-125
o-Xylene	0.050	0.042	84%	75-125
m,p-Xylene	0.100	0.085	85%	75-125
Tolueле	0.050	0.043	85%	75-125
1,1,1-Trichloroethane	0.050	0.048	97%	75-125
Trichloroethene (TCE)	0,050	0.050	100%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	/ WRC	%RC	%RC	%RC
Sample I.D.			M-BLK	120723-33	120723-34	120720-11	120720-12	120720-13	120720-14
Dibromofluoromethane	50,0	70-130	117%	91%	88%	76%	96%	104%	98%
Toluene-d8	50.0	70-130	91%	89%	86%	99%	92%	92%	91%
4-Bromofluorobenzene	50.0	70-130	104%	111%	109%	110%	99%	100%	100%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC

Surrogate Recovery	SPK CORC	AGP %RC	%RC	70RC	%RC	%KC	%RC	%RC	%RC
Sample I.D.			120720-15	120720-16	120720-17	120720-18	120720-19	120720-20	120720-21
Dibromofluoromethane	50.0	70-130	83%	89%	108%	112%	106%	108%	106%
Toluene-d8	50.0	70-130	90%	93%	95%	93%	90%	91%	91%
4-Bromofluorobenzene	50.0	70-130	94%	96%	98%	100%	97%	99%	94%

Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC V
Sample I.D.		-	120720-22	120720-23	120720-24	120720-25	120720-26	120720-27	120720-28
Dibromofluoromethane	50.0	70-130	112%	114%	92%	109%	97%	99%	89%
Toluene-d8	50.0	70-130	91%	92%	87%	111%	105%	87%	92%
4-Bromoflugrobenzene	50.0	70-130	96%	98%	110%	76%	53*%	60*%	3*%

^{* =} Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

Enviro-Chem, Inc. L 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: (CA-DHS ELAP CERTIFICA	nue, (909) 590-5907	Turnarou o Same Da o 24 Hours o 48 Hours o 1 Week (Y .	N.	OF CONTAINERS	TEMPERATURE NO	PRESERVATION G	Brook R				Misc.
SAMPLE ID	SAMPLE ID LAB ID SAMPLING DATE TIME			MATRIX	No. O	TEMP	PRES		Analys	is Req	uired	COMMENTS
MWbn = 5	120770-11	7/20	8:48	Sal	4	*	A	K				
10	1 12	1	8:52			4	*	K				
15	-13	~	8:54	N	N	1	٨	K				
20	-14	1	8:57	4	n	1	*	×				
25	-15	1	9:01	1		A	h	K				
3.	-16	4	9:03	4	W	4	*	K				
35	-17	*	9.87	4		*	+	K				
40	48	-	9:10	4	4		۲	4				
45	-19	4	9:13	4	6	W	1	k				
50,	20	~	9:17	4	h	A	٨	K				
55	21	4	9.74		IA	-	n	K				
60,	-22	W	9:25	4	4		۴	k				
65	-73	h	9:29	41	1		N.	X				
70/	-M	-	9:31	4		1	4	X				1.0
35	-75	W	9:36	4	'		η	X				DIII
Company Name:	ENDINERRY	Na			Proje	ct Cont	act: Pic	KF	FERO	Samp	oler's Signature:	Then
Address: 431 W	LAMBER	TK	20 #	305	Tel:	(7K	1) 2	56.2		Proje	ct Name/ID:	758
City/State/Zip: BREA		18n			Fax:	1		26.15	505		SWTINE	VAC HEAT
Re inquished by:	tilla/		Received b	y: /	4	-	,		34334	2/1345	Instructions for	Sample Storage After Analysis:
Relinquished by:			Received to	y:	1				Date & Time:	1	O Dispose of O	Return to Client Store (30 Days)
Relinquished by:			Received b	ry:					Date & Time:		O Other:	
			CHAIN	OF	CUS	ОТ	DY R	ECOF	RD			

WHITE WITH SAMPLE - VELLOW TO CLICK!"

Date:

Page _____of ____

1214 E. I. Pomona, Tel: (909) 5	exington Ave CA 91766	(909) 590-5907	Turnarour o Same Day o 24 Hours o 48 Hours o 72 Hours a 1 Week (S		X	OF CONTAINERS	TEMPERATURE &	PRESERVATION 6	1	30,00	TIME CO				//	Misc.
SA	MPLEID	LAB ID	SAM	PLING TIME	MATRIX	No. O	TEMP	PRES		1	Anal	ysis	Req	uired		COMMENTS
MW6	m. 80	120720-76	7/20	9:40		4	1	¥	X							
	. 85	-27	1/2	9:50	1/6	15	4	и	×	X						
	90	-28	14	9:57	w	4	*	~	X							
												-	-			
							-	-				+	+			
													-			
																11)
Company Nar	ne: GRO EN	BINEERN	5			Proje	ct Cont	act: Pick	_		CER	0	Samp	oley's Signati	wit	Lew
	31 05.	LAMBEN	TA	2 #	305	Tel:	714.	256	, 2	73	37		Proje	ct Name/ID:	75	8
City/State/Zip	1	CA	9282	1		Fax:	(719	1 25	56.	150	5		Co	STINE		,
Relinquished b	1. John	illa		Received I	by: //	'					Z/X Dete &	142/	341			Storage After Analysis:
Relinquished b	y:	-		Receives t	ру.					Date & Time:				100		to Client O Store (30 Days)
Relinquished b	y:			Received t	oy:					Date & Timo:			0 Other:			
				CHAIL	N OF	CUS	STO	DYR	EC	ORI	D					

WHITE WITH SAMPLE - YELLOW TO CLIENT

Page / ot /

Attachment D

Health & Safety Plan

FERO ENGINEERING PROJECT SITE SAFETY PLAN

1.0 GENERAL INFORMATION

Original Site Safety Plan: Yes (X) No () Rev. No.

Project Number: 10-0758 Project Manager: John Petersen

Project Name: Continental Heat Treating, Inc.

Site Name: Continental Heat Treating, Inc.

Site Address: 10643 South Norwalk Boulevard

Work Description: Groundwater Monitoring/Soil Gas Survey/ Indoor Air Sampling

Plan Prepared By: John Petersen Date: 4/16/2012

Work Start Date: 6/1/12 Work Hours: 8 a.m. to 5 p.m.

Thomas Guide Coordinates: Page 706 / H5

Client Site Contact: John Petersen

Client Office Contact: Jim Stull

Client Site Safety Officer: N/A

Fero Engineering Site Safety Officer: John Petersen

Source/Age of Information: Client/Current

Incident/Site Description: Soil and Groundwater Volatile Organic Compound Impacts

Physical Description of Facility: Metal Heat Treating Facility

Describe Special Site Entry Procedures: None

Operation Description of Facility: Metal Heat Treating Facility

Site Status: Active (X) Inactive ()

Need to Evacuate Nearby People: Yes () No () N/A (X)

Evacuation Distance: N/A

Initiated By: N/A

Officials Present and Capacity: RWQCB

Warning Method/Signal for Site Evacuation: Verbal

Presence of Hazardous Materials: Potential () Confirmed (X)

Location of Hazardous Materials: Identified (X) Assumed () Unknown ()

Number of Feet to Nearest Right of Way: 30 ft.

Distance, Location, & Number of Nearest Phone: On-site mobile. (714) 624-7280

Nearest Public Road: 30 ft.

Nearest Water: 30 ft.

Nearest Fire Extinguisher: Drill Rig or Fero Truck

2.0 HAZARDOUS INFORMATION

Health Hazard:

Material	Body Entry Route	Symptoms
Tetrachloroethylene	Inhalation/Contact	Malaise; dizziness; headache; increased perspiration; fatigue; in coordination; impaired mental acuity
Trichloroethylene	Inhalation/Contact	Dizziness; incoordination; drowsiness
1,1-Dichloroethylene (DCE)	Inhalation/Contact	Eye irritation; respiratory system
1,2-Dichloroethane (DCA)	Inhalation/Contact	Eye irritation; respiratory system

First Aid: Move victim to fresh air and call emergency medical care; if not breathing, give artificial respiration, if breathing is difficult, give oxygen. In case of contact with contaminated material, flush with running water for at least 15 minutes. Wash skin with soap and water. Remove and isolate contaminated clothing and shoes at the site. First aid kit is located in Fero Engineering vehicle.

Material Exposure Information:

Material	PEL	<u>IDLH</u>
Tetrachloroethylene	100 ppm	150 ppm
Trichloroethylene	100 ppm	1000 ppm
1,1-Dichloroethylene	200 ppm	1000 ppm
1,2-Dichloroethane	100 ppm	3000 ppm

- PEL Permissible exposure limit over an 8-hour time weighted average to which any employee may be exposed
- IDLH Immediately dangerous to life or health level representing a maximum concentration from which one could escape within 30 minutes without any escape impairing symptoms or any irreversible health effects.
- Potential Acute Toxicity: All compounds cause central nervous system depression, kidney changes including: decreased urine flow, swelling especially around eyes, and anemia, and liver changes including: fatigue, malaise, dark urine, liver enlargement, and jaundice. Trichloroethylene and Tetrachloroethylene are suspected carcinogens.

Hazard Type: Liquid (X) Solid () Vapor/Gas (X) Sludge ()

Anticipated Hazard Level: High() Moderate() Low(X) Unknown()

Site Monitoring Equipment: PID and Olfactory senses (odor threshold for PCE is 27 ppm)

Heat Stress Conditions: Yes () No () Possible (X)

Dust Monitoring: Yes () No (X)

Air Monitoring Protocol: Monitor breathing zone of persons nearest the source of contamination.

Conditions for Suspension of Work: Determination of an ambient air concentration greater than 100 ppm using PID.

Potential Site Physical Hazards: On site equipment operation.

3.0 PERSONAL PROTECTION

Level of Protection Planned: D - Hardhat, (dry) coverall or Tyvek/(wet) Saranex, (dry) safety glasses/(wet) goggles, (dry/wet) Nitrile gloves, (dry) steel toe boots/(wet) Neoprene steel toe boots. Conditions to Upgrade to Level C: Exceedance of the lowest PEL (100 ppm) and work is to continue. Level C contingency equipment includes: organic vapor respirators with half face masks.

Instruction for Disposal of Contaminated Materials: Groundwater removed and contaminated clothing, which is to be discarded, shall be contained onsite in DOT approved 55-gallon drums until a determination is made as to the level of contamination. In the event that contaminated materials require offsite disposal or treatment, a certified waste hauler under proper manifesting and vehicle placarding shall transport them.

4.0 EMERGENCY PLANNING

Police Department: 911 Fire Department: 911

Local Airport: N/A Air Evacuation: N/A

Local Hospital: Downey Regional Medical Center

11500 Brookshire Ave, Downey, California 90241

562-904-5000

Thomas Guide Page: 706 B/6

Fero Engineering Office Contact: Rick L. Fero

HEALTH AND SAFETY PLAN SIGNATURE FORM

Site Name: See Address Job Number: 10-0758

Region: Los Angeles County Location: 10643 South Norwalk Blvd., Santa Fe

Springs

Field personnel are required to receive a copy of the final health and safety plan (HSP) for the above referenced work site. The project manager is responsible for distribution of this document to all involved personnel and to discuss areas of concern identified in the document prior to initiating operations at the site. All personnel directly involved with field operations at the referenced site must sign this form indicating their access to, review of, and agreement to compliance with measures outlined in the HSP. All individuals signing this form must be capable, through training, of successfully performing operations specified within the HSP. The original of this form is made a permanent part of the project file.

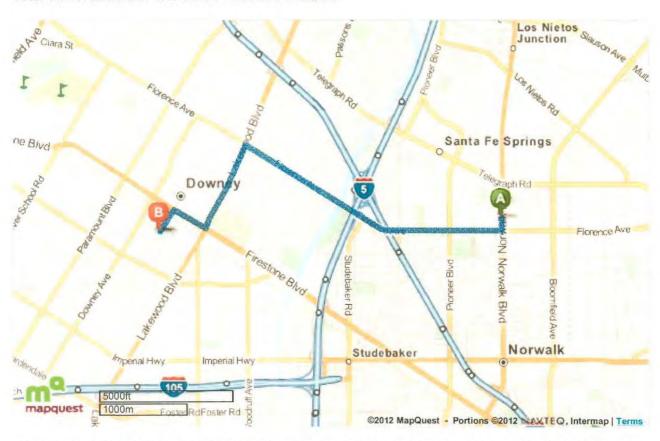
I have reviewed, understand, and agree to comply with the provisions of the health and safety plan for the above referenced site during conduct of activities on this project.

SIGNATURE	PRINTED NAME	DATE
1. Can //	Cameron Herbe	7/9/12
2. JUSHAROSE	7	7412
3. Ty Mc Caprola	Tille	7/9/12
4. This mo	RICK L. FERN	19/12
5. All 15	GENDINO GINEEL	1/18/12
6 May Mars	Meso Mouveston	7.18.12
7		
8		
9		
10		

Trip to:

11500 Brookshire Ave

Downey, CA 90241-4917 4.47 miles / 9 minutes Notes



10643 Norwalk Blvd, Santa Fe Springs, CA 90670-3821

	1. Start out going south on Norwalk Blvd toward Florence Ave. Map	0.1 Mi 0.1 Mi Total
-	2. Turn right onto Florence Ave. Map If you reach Lakeland Rd you've gone about 0.2 miles too far	2.8 Mi 2.9 Mi Total
4	3. Turn left onto Lakewood Blvd / CA-19 S. Map Lakewood Blvd is just past Vultee St Jack in the Box is on the corner If you reach Tristan Dr you've gone a little too far	0.9 Mi 3.8 Mi Total
-	4. Turn right onto Firestone Blvd / CA-42 W. Map Firestone Blvd is 0.1 miles past 3rd St Acapulco Mexican Restaurant is on the corner If you reach Margaret St you've gone about 0.1 miles too far	0.4 Mi 4.2 Mi Total
4	5. Turn left onto Brookshire Ave. Map Brookshire Ave is 0.1 miles past Patton Rd Ups Store is on the corner If you reach Dolan Ave you've gone about 0.1 miles too far	0.3 Mi 4.5 Mi Total
	6. 11500 BROOKSHIRE AVE is on the left. Map Your destination is just past Davis St If you reach Manalee St you've gone a little too far	

11500 Brookshire Ave, Downey, CA 90241-4917

Total Travel Estimate: 4.47 miles - about 9 minutes

©2011 MapQuest, Inc. Use of directions and maps is subject to the MapQuest Terms of Use. We make no guarantee of the accuracy of their content, road conditions or route usability. You assume all risk of use. View Terms of Use

Attachment E

Well Permits

6268133016

WELL	DEDMIT	A DDI ICA	TION .	NONPI	RODUCTION	WETTE
AABIT	L'ALENATET	ALLUCA	A ILVIN -	TANDER E	CODUCTION	AAITITATO

WATER QUALITY PROGRAM - ENVIRONMENTAL HEALTH DIVISION

5050 COMMERCE DRIVE, BALDWIN PARK, CA 91706 TELE (626) 430-5420 FAX (626) 813-3016

DATE 6-21-12

MONITORING HYDROPUNCH	CATHODIC C.P.T. (For Ground	TION OR RENOVATION INJECTION Water Sampling)	□ DECOMMISSIONING □ EXTRACTION □ OTHER:	D OTHER:	NGE
teleproced William Spring Co.		Haften values so es	MERCA STREET	2.11.00	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Site Address N	orwalk Blvd.	Santa E	e Springs	90	Sip Code
Nearest Intersection Florence	Aue.	Thomas Guide Map Bo	ook Page/Grid	Number of Wells	in Each Parcel
	Management of the second	CONTRACTOR OF STREET	GEORGIA DE LA COMPANION DE LA C	de de la	September 1
	00-140 Depth of Well Casing	110/140/170		eat cement	
Depth of Sanitary / Anhular	8, WMR 110, (5, -8,	8'w/three Z' pro!	ductor Casing Scal be zones). MW54(0/140'(z1-129') N	W546/176'(2'-159')
Owner's Name	All and the second of the second of the second of	Teleph	one Number	Marie Property the Charge	Activities of the state of the
Continenta	I Heat Treat	ing	562 944 880		Zin Code
10643 No	orwalk Blud.	Santa F	e springs	A	10670
Driller's Name	A SECOND STATE OF THE SECO	Tel <u>e</u> ph	one Number	C-57 Licens	e Number
Address Address	. \		4 744 2490 City	686	Zin Code
1150 W. T	renton Ave.	and reference in the const	Drange	9286	
Well Depth	Method		H Name	Depth and Number	
□ log/records Type and	Well Asso Type of	Size of		of Perforations ethod of Upper Scal	
Amount of Sealant	Perforator	Perforation (CAN)	ons P (G)(ANIANHES) NISSESSAN	ressure Application	nanci
Company Fero En	vironmental En	arveerind	Inc.	_	
Address 431 W	Lambert Rd	#305	Brea	Castaco	97 Q7 L
Project Manager	ersen/Rick Fee	Telephone Number	2562737	Fax Number 25	6 1505
ATTENTION: WO	RK PLAN MODIFICATI	ONS MAY BE REQU	IRED IF WELL AND	GEOLOGIC COND	ITIONS
ENCOUNTERED A THIS DEPARTMEN	T THE SITE INSPECTION	ON ARE FOUND TO	DIFFER FROM THE S	SCOPE OF WORK	PRESENTED TO
I hereby agree to comply in	every respect with all the regulations alifornia pertaining to well constru	ions of the County Environme	ental Health Division and with	all ordinances and the	Lounty of Los
Division Of Los Angeles C	combre)	citon, reconstruction, and dec	TI D	6/20	E
Signature of Applicant:	Velly Tom	Printed	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	545641	
	OFFICER. WELL CON				THE THE
	PROVAL FROM THIS I			V SAUFOR	TELE
本州州米本市市州州市市市市市市市	**************************************	***(DEPARTMENT U	SE ONLY)*******	######################################	*****
	The training designation of the second	R	EHS (a 1)	DA	TE /
Conditions ()	Hanner .	0 -0 -0	Xuan Jusan	ans 3	2/12
Central	# 890622 LASUE	10 mstall	0 48 ms	Drive to st	and drilling
6 mainlan	a wills obser	, W .			
splan subm	0 5	this office			
ax 6264305	5386 or Ullrodrian	Z P. O. Y acount	in gov		
		, RI	creey ~	DA	TE
entrace to the contract of the	and a sold of the sold of			1	

NOTICE

This well permit approval is limited to compliance with the California Well Standards and the Los Angeles County Code and does not grant any rights to construct, reconstruct, or decommission any well. The applicant is responsible for securing all other necessary permits such as: coastal commission, water rights, encroachment, utility lines detection, city public works division.

Attachment F

Dulin and Boynton Survey Data

GLOBAL_ID	FIELD_PT_NAME FIELD_PT_CLASS	XY_SURVEY_DATE L	ATITUDE I	LONGITUDE	XY_METHOD	XY_DATUM	XY_ACC_VAL	XY_SUR	VEY_ORG		GPS_EQUIP_TYPE	XY_SURVEY_DESC	EFFECTIVE_DATE
	MW-5D	8/1/2012 3	3.9367072	-118.0734071	CGPS	NAD83	20	DOUGLA	S BOYNTON PI	LS, LS4787	L399	NGS PID AI4489 AND AJ1841 EPOCH DATE 2000.35	
	MW-5M	8/1/2012 3	3.9367069	-118.0734254	CGPS	NAD83	20	DOUGLA	S BOYNTON PI	LS, LS4787	L399	NGS PID AI4489 AND AJ1841 EPOCH DATE 2000.35	
	MW-5S	8/1/2012 3	33.9367073	-118.0734409	CGPS	NAD83	20	DOUGLA	S BOYNTON PI	LS, LS4787	L399	NGS PID AI4489 AND AJ1841 EPOCH DATE 2000.35	
	MW-6D	8/1/2012 3	33.9371196	-118.0736742	CGPS	NAD83	20	DOUGLA	S BOYNTON PI	LS, LS4787	L399	NGS PID AI4489 AND AJ1841 EPOCH DATE 2000.35	
	MW-6M	8/1/2012 3	3.9371202	-118.0737085	CGPS	NAD83	20	DOUGLA	S BOYNTON PI	LS, LS4787	L399	NGS PID AI4489 AND AJ1841 EPOCH DATE 2000.35	
	MW-6S	8/1/2012 3	3.9371205	-118.0737249	CGPS	NAD83	20	DOUGLA	S BOYNTON PI	LS, LS4787	L399	NGS PID AI4489 AND AJ1841 EPOCH DATE 2000.35	

GLOBAL_ID FIELD_PT_I	NAME ELEV_SURVEY_DATE	ELEVATION ELEV_METHO	D ELEV_DATUM I	ELEV_ACC_VAL ELEV_SURVEY_ORG	RISER_HT ELEV_DESC	EFFECTIVE_DATE
MW-5D	8/1/2012	137.54 DIG	88	3 DOUGLAS BOYNTON PLS, LS4787	-0.26 LA COUNTY BM #Y9667 2005 ELEV= 136.173 FEET	
MW-5M	8/1/2012	137.37 DIG	88	3 DOUGLAS BOYNTON PLS, LS4787	-0.41 LA COUNTY BM #Y9667 2005 ELEV= 136.173 FEET	
MW-5S	8/1/2012	137.49 DIG	88	3 DOUGLAS BOYNTON PLS, LS4787	-0.29 LA COUNTY BM #Y9667 2005 ELEV= 136.173 FEET	
MW-6D	8/1/2012	138.01 DIG	88	3 DOUGLAS BOYNTON PLS, LS4787	-0.20 LA COUNTY BM #Y9667 2005 ELEV= 136.173 FEET	
MW-6M	8/1/2012	137.95 DIG	88	3 DOUGLAS BOYNTON PLS, LS4787	-0.22 LA COUNTY BM #Y9667 2005 ELEV= 136.173 FEET	
MW-6S	8/1/2012	137.84 DIG	88	3 DOUGLAS BOYNTON PLS, LS4787	-0.40 LA COUNTY BM #Y9667 2005 ELEV= 136.173 FEET	

FERO 10643 NORWALK BLVD SANTA FE SPRINGS, CA

<u>WELL</u>	<u>ELEV</u>	<u>DESC</u>	<u>NORTH</u>	<u>EAST</u>
MW-5D	137.54	4" PVC (N)	1799356.7	6539400.1
MW-5D	137.81	RIM		
MW-5D	137.80	CONCRETE		
MW-5M	137.37	4" PVC (N)	1799356.6	6539394.5
MW-5M	137.80	RIM		
MW-5M	137.78	CONCRETE		
N 40 4 / E.C.	427.40	411 5) (6 (1)	47002567	6520200.0
MW-5S	137.49	4" PVC (N)	1799356.7	6539389.8
MW-5S	137.80	RIM		
MW-5S	137.78	CONCRETE		
MW-6D	138.01	4" PVC (N)	1799506.8	6539319.1
MW-6D	138.24	RIM	1733300.0	0333313.1
MW-6D	138.21	CONCRETE		
IVIVV-OD	130.21	CONCRETE		
MW-6M	137.95	4" PVC (N)	1799507.0	6539308.8
MW-6M	138.20	RIM		
MW-6M	138.17	CONCRETE		
MW-6S	137.84	4" PVC (N)	1799507.1	6539303.8
MW-6S	138.24	CONCRETE		

BENCHMARK:

VERTICAL DATUM NAVD88

COUNTY OF LOS ANGELES BM #Y9667, BM TAG IN N WALL C.B. 20' N/O BCR AT NW COR NORWALK BLVD AND FLORENCE AVE

2005 ELEV= 136.173 FEET NAVD88

HORIZONTAL DATUM NAD83, ZONE 5

NGS PID STATIONS AI4489 AND AJ1841 EPOCH DATE 2000.35